Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the n...Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control. Three typical frequencies of the spanwise traveling wave, i.e., high-, middle- and low-frequency, corresponding to the exciting periods at 25, 50 and 100, are considered to study the turbulence dynamics in the wall and surface regions. To elucidate the behaviors of turbulence statistics, some typical quantities, including the mean velocity, velocity fluctuations and the structures of turbulence fluctuations, are exhibited and analyzed.展开更多
This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics re...This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90405007, 10772173 and 90605005)the Program for Cheung Kong Scholars and Innovative Research Team in the University+1 种基金the Science and Technology Innovative Foundation of the Chinese Academy of Sciences (Grant No CXJJ-237)the Anhui Provincial Excellent Young Scholars Foundation (Grant No 08040106826)
文摘Turbulent open channel flows subjected to the control of a spanwise traveling wave have been investigated by means of Direct Numerical Simulation (DNS). The objective of this study is to reveal the response of the near-wall and surface-influenced turbulence to the spanwise traveling wave control. Three typical frequencies of the spanwise traveling wave, i.e., high-, middle- and low-frequency, corresponding to the exciting periods at 25, 50 and 100, are considered to study the turbulence dynamics in the wall and surface regions. To elucidate the behaviors of turbulence statistics, some typical quantities, including the mean velocity, velocity fluctuations and the structures of turbulence fluctuations, are exhibited and analyzed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos10772166and10672151)the Foundation of China Academy of Engineering Physics(Grant No20050104)
文摘This paper solves the three-dimensional Navier-Stokes equation by a fractional-step method with the Reynolds number Reτ=194 and the rotation number Nτ=0-0.12. When Nτ is less than 0.06, the turbulence statistics relevant to the spanwise velocity fluctuation are enhanced, but other statistics are suppressed. When Nτ is larger than 0.06, all the turbulence statistics decrease significantly. Reynolds stress budgets elucidate that turbulence kinetic energy in the vertical direction is transferred into the streamwise and spanwise directions. The flow structures exhibit that the bursting processes near the bottom wall are ejected toward the free surface. Evident change of near-surface streak structures of the velocity fluctuations are revealed.