In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown...In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.展开更多
As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies l...As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.展开更多
基金This work is supported by the Singapore National Research Foundation NRF RF Award No. NRFRF2010- 07, MOE Tier 2 MOE2012-T2-2-049, A'Star SERC PSF grant No. 1321202101, and MOE Tier 1 MOE2013- T1-2-235. W. Huang acknowledges the support of the National Basic Research Program of China (973 Program) (No. 2015CB932200), the National Natural Science Foundation of China (NSFC) (Grant Nos. 21144004, 20974046, 21101095, 21003076, 20774043, 51173081, 50428303, 61136003, and 50428303), the Ministry of Education of China (No. IRT1148), the NSF of Jiangsu Province (Grant Nos. SBK201122680, 11KJB510017, BK2008053, 11KJB510017, BK2009025, 10KJB510013, and BZ2010043), and NUPT (Nos. NY210030 and NY211022). J. R Wang is grateful for the NSFC (No. 11474164), NSF of Jiangsu province (No. BK20131413), and the Jiangsu Specially-Appointed Professor program. Y. L. Wang thanks Luqing Wang, Dr. Xiaolong Zou, and Dr. Alex Kutana for the constructive discussion.
文摘In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
基金supported by the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA050210)the National Natural Science Foundation of China (Grant No. 51177011)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ11_0150)Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.