As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tu...As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tubes have been widely used in many high-end industries such as aviation, aerospace, shipbuilding, automobile, energy and health care. The tube bending has become one of the key manufacturing technologies for lightweight product forming. Via the analysis of bending characteristics and multiple defects, advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados, wall thinning (cracking) at the extrados, springback phenomenon, cross-section deformation, forming limit and process/ tooling design/optimization. Some currently developed bending techniques are reviewed in terms of their advantages and limitations. Finally, in view of the urgent requirements of high-performance complex bent tube components with difficult-todeform and lightweight materials in aviation and aerospace fields, the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.展开更多
With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and f...With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.展开更多
Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer...Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending.展开更多
With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and ...With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and automotive industries because of their advantages: easily achieving forming and manufacturing process at low cost and in a short time. The current research on welded tube plastic forming is mainly concentrated on tube internal high-pressure forming, tube bending forming, and tube spinning forming. The focuses are on the material properties and char- acterization of welded tubes, finite element modeling for welded tube forming, and inhomogeneous deformation behavior and the mechanism and rules of deformation coordination in welded tube plastic forming. This paper summarizes the research progress in welded tube plastic forming from these aspects. Finally, with a focus on the urgent demand of the aviation, aerospace and automotive industries for high-strength and light-weight tubes, this paper discusses the development trends and challenges in the theory and technology of welded tube plastic forming in the future. Among them, laser tailor-welded technology will find application in the manufacture of high-strength steel tubes. Tube-end forming technology, such as tube flaring and flanging technology, will expand its appli- cation in welded tubes. Therefore, future studies will focus on the FE modeling regarding how to consider effects of welding on residual stresses, welding distortions and microstructure, the inhomo- geneous deformation and coordination mechanism of the plastic forming process of tailor-welded tubes, and some end-forming processes of welded tubes, and more comprehensive research on the formin~ mechanism and limit of welded tubes.展开更多
基金Foundation items: National Natural Science Foundation of China (50905144) State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (09-10)+2 种基金 NPU Foundation for Fundamental Research (JC201028) Fund of the State Key Laboratory of Solidification Processing in NWPU, Natural Science Basic Research Plan in Shaanxi Province (2011JQ6004) "111" Project (B08040)
文摘As one kind of key components with enormous quantities and diversities, the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects. The bent tubes have been widely used in many high-end industries such as aviation, aerospace, shipbuilding, automobile, energy and health care. The tube bending has become one of the key manufacturing technologies for lightweight product forming. Via the analysis of bending characteristics and multiple defects, advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados, wall thinning (cracking) at the extrados, springback phenomenon, cross-section deformation, forming limit and process/ tooling design/optimization. Some currently developed bending techniques are reviewed in terms of their advantages and limitations. Finally, in view of the urgent requirements of high-performance complex bent tube components with difficult-todeform and lightweight materials in aviation and aerospace fields, the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 59975076, 50175092, 50905144)the National Science Found of China for Distinguished Young Scholars (Grant No. 50225518)
文摘With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.
基金the National Natural Science Foundation of China (No.51164030)National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University (No.gf201501001) for the support on this research
文摘Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and crosssection distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to auicklv predict the forming aualitv of tube numerical control (NC) bending.
基金support from the National Science Fund for Excellent Young Scholars of China(No.51222509)the National Natural Science Foundation of China(No.51175429)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(No.97-QZ-2014 and 90-QP-2013)of Chinathe Marie Curie International Research Staff Exchange Scheme(IRSES,Mat Pro Future,No.318968)within the 7th EC Framework Programme(FP7)
文摘With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and automotive industries because of their advantages: easily achieving forming and manufacturing process at low cost and in a short time. The current research on welded tube plastic forming is mainly concentrated on tube internal high-pressure forming, tube bending forming, and tube spinning forming. The focuses are on the material properties and char- acterization of welded tubes, finite element modeling for welded tube forming, and inhomogeneous deformation behavior and the mechanism and rules of deformation coordination in welded tube plastic forming. This paper summarizes the research progress in welded tube plastic forming from these aspects. Finally, with a focus on the urgent demand of the aviation, aerospace and automotive industries for high-strength and light-weight tubes, this paper discusses the development trends and challenges in the theory and technology of welded tube plastic forming in the future. Among them, laser tailor-welded technology will find application in the manufacture of high-strength steel tubes. Tube-end forming technology, such as tube flaring and flanging technology, will expand its appli- cation in welded tubes. Therefore, future studies will focus on the FE modeling regarding how to consider effects of welding on residual stresses, welding distortions and microstructure, the inhomo- geneous deformation and coordination mechanism of the plastic forming process of tailor-welded tubes, and some end-forming processes of welded tubes, and more comprehensive research on the formin~ mechanism and limit of welded tubes.