The problem of yield estimation merely from performance test data of qualified semiconductor devices is studied. An empirical formula is presented to calculate the yield directly by the sample mean and standard de- vi...The problem of yield estimation merely from performance test data of qualified semiconductor devices is studied. An empirical formula is presented to calculate the yield directly by the sample mean and standard de- viation of singly truncated normal samples based on the theoretical relation between process capability indices and the yield. Firstly, we compare four commonly used normality tests under different conditions, and simulation results show that the Shapiro-Wilk test is the most powerful test in recognizing singly truncated normal samples. Secondly, the maximum likelihood estimation method and the empirical formula are compared by Monte Carlo simulation. The results show that the simple empirical formulas can achieve almost the same accuracy as the max- imum likelihood estimation method but with a much lower amount of calculations when estimating yield from singly truncated normal samples. In addition, the empirical formula can also be used for doubly truncated normal samples when some specific conditions are met. Practical examples of yield estimation from academic and IC test data are given to verify the effectiveness of the proposed method.展开更多
Linear regression models for interval-valued data have been widely studied.Most literatures are to split an interval into two real numbers,i.e.,the left-and right-endpoints or the center and radius of this interval,an...Linear regression models for interval-valued data have been widely studied.Most literatures are to split an interval into two real numbers,i.e.,the left-and right-endpoints or the center and radius of this interval,and fit two separate real-valued or two dimension linear regression models.This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix,based on a generalized linear model for interval-valued data.A three step estimation method is proposed.Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.展开更多
文摘The problem of yield estimation merely from performance test data of qualified semiconductor devices is studied. An empirical formula is presented to calculate the yield directly by the sample mean and standard de- viation of singly truncated normal samples based on the theoretical relation between process capability indices and the yield. Firstly, we compare four commonly used normality tests under different conditions, and simulation results show that the Shapiro-Wilk test is the most powerful test in recognizing singly truncated normal samples. Secondly, the maximum likelihood estimation method and the empirical formula are compared by Monte Carlo simulation. The results show that the simple empirical formulas can achieve almost the same accuracy as the max- imum likelihood estimation method but with a much lower amount of calculations when estimating yield from singly truncated normal samples. In addition, the empirical formula can also be used for doubly truncated normal samples when some specific conditions are met. Practical examples of yield estimation from academic and IC test data are given to verify the effectiveness of the proposed method.
基金the National Nature Science Foundation of China under Grant Nos.11571024and 11771032the Humanities and Social Science Foundation of Ministry of Education of China under Grant No.20YJCZH245。
文摘Linear regression models for interval-valued data have been widely studied.Most literatures are to split an interval into two real numbers,i.e.,the left-and right-endpoints or the center and radius of this interval,and fit two separate real-valued or two dimension linear regression models.This paper is focused on the bias-corrected and heteroscedasticity-adjusted modeling by imposing order constraint to the endpoints of the response interval and weighted linear least squares with estimated covariance matrix,based on a generalized linear model for interval-valued data.A three step estimation method is proposed.Theoretical conclusions and numerical evaluations show that the proposed estimator has higher efficiency than previous estimators.