The antisense 4CL (4-coumarate: CoA ligase) gene was transformed into triploid Chinese white poplar (Populus tomentosa) mediated by Agrobacterium tumefaciens. PCR and Southern blot analysis indicated that antisense 4C...The antisense 4CL (4-coumarate: CoA ligase) gene was transformed into triploid Chinese white poplar (Populus tomentosa) mediated by Agrobacterium tumefaciens. PCR and Southern blot analysis indicated that antisense 4CL gene had been integrated into the genome of the transgenic Chinese white poplars. The antisense gene had also been expressed, which was indicated by RT-PCR and Western analysis. Klason lignin content assay showed that repression of 4CL expression could result in remarkable reduction of lignin content in transgenic poplars, with most reduction of 41.73% compared with that of wild type in this paper. But there is no significant difference in holocellulose content be-tween trans- genic and wild poplars. We considered that 4CL might not be the metabolism control point between lignin and carbohy- drate biosynthesis. The stems of transgenic poplars displayed red-brown color with different levels after the bark was peeled, while those of untransformed plants were white. No visible differences in growth and development were observed between transgenic and wild plants. Wiesner reaction analysis of the transgenic plant stems with reduced lignin content exhibited red color, while that of untrans-formed plant was typically purple-red.展开更多
In the paper, differences between the juvenile Triploid Chinese White Poplar (TCWP) in saline soil and 5-year TCWP in normal soil are compared in terms of their APMP-pulping properties. The results show that the salin...In the paper, differences between the juvenile Triploid Chinese White Poplar (TCWP) in saline soil and 5-year TCWP in normal soil are compared in terms of their APMP-pulping properties. The results show that the saline planting environment does not show obvious effects on pulping properties of juvenile TCWP.展开更多
文摘The antisense 4CL (4-coumarate: CoA ligase) gene was transformed into triploid Chinese white poplar (Populus tomentosa) mediated by Agrobacterium tumefaciens. PCR and Southern blot analysis indicated that antisense 4CL gene had been integrated into the genome of the transgenic Chinese white poplars. The antisense gene had also been expressed, which was indicated by RT-PCR and Western analysis. Klason lignin content assay showed that repression of 4CL expression could result in remarkable reduction of lignin content in transgenic poplars, with most reduction of 41.73% compared with that of wild type in this paper. But there is no significant difference in holocellulose content be-tween trans- genic and wild poplars. We considered that 4CL might not be the metabolism control point between lignin and carbohy- drate biosynthesis. The stems of transgenic poplars displayed red-brown color with different levels after the bark was peeled, while those of untransformed plants were white. No visible differences in growth and development were observed between transgenic and wild plants. Wiesner reaction analysis of the transgenic plant stems with reduced lignin content exhibited red color, while that of untrans-formed plant was typically purple-red.
文摘In the paper, differences between the juvenile Triploid Chinese White Poplar (TCWP) in saline soil and 5-year TCWP in normal soil are compared in terms of their APMP-pulping properties. The results show that the saline planting environment does not show obvious effects on pulping properties of juvenile TCWP.