Biogenic palladium nanoparticles(bio-Pd NPs)are used for the reductive transformation and/or dehalogenation of persistent micropollutants.In this work,H2(electron donor)was produced in situ by an electrochemical cell,...Biogenic palladium nanoparticles(bio-Pd NPs)are used for the reductive transformation and/or dehalogenation of persistent micropollutants.In this work,H2(electron donor)was produced in situ by an electrochemical cell,permitting steered production of differently sized bio-Pd NPs.The catalytic activity was first assessed by the degradation of methyl orange.The NPs showing the highest catalytic activity were selected for the removal of micropollutants from secondary treated municipal wastewater.The synthesis at different H2 flow rates(0.310 L/hr or 0.646 L/hr)influenced the bio-Pd NPs size.The NPs produced over 6 hr at a lowH2 flow rate had a larger size(D50=39.0 nm)than those produced in 3 hr at a high H2 flow rate(D50=23.2 nm).Removal of 92.1%and 44.3%of methyl orange was obtained after 30 min for the NPs with sizes of 39.0 nm and 23.2 nm,respectively.Bio-Pd NPs of 39.0 nm were used to treat micropollutants present in secondary treated municipal wastewater at concentrations ranging fromμg/L to ng/L.Effective removal of 8 compounds was observed:ibuprofen(69.5%)<sulfamethoxazole(80.6%)<naproxen(81.4%)<furosemide(89.7%)<citalopram(91.7%)<diclofenac(91.9%)<atorvastatin(>94.3%)<lorazepam(97.2%).Re-moval of fluorinated antibiotics occurred at>90%efficiency.Overall,these data indicate that the size,and thus the catalytic activity of the NPs can be steered and that the removal of challengingmicropollutants at environmentally relevant concentrations can be achieved through the use of bio-Pd NPs.展开更多
The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations...The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations of salts, Escherichia coli and presence of dissolved organic matter, and inorganic N after secondary treatment, among others. Its application could thus cause environmental consequences such as soil salinization, ammonia volatilization, and greenhouse gas emissions. In an incubation experiment, we evaluated the characteristics and effects of water-filled pore space (WFPS) and N input on the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) from silt loam soil receiving treated wastewater. Irrigation with treated wastewater (vs. distilled water) significantly increased cumulative N2O emission in soil (117.97 μg N kg-1). Cumulative N2O emissions showed an exponentially increase with the increasing WFPS in unamended soil, but the maximum occurred in the added urea soil incubated at 60% WFPS. N2O emissions caused by irrigation with treated wastewater combined with urea-N fertilization did not simply add linearly, but significant interaction (P〈0.05) caused lower emissions than the production of N2O from the cumulative effects of treated wastewater and fertilizer N. Moreover, a significant impact on cumulative CO2 emission was measured in soil irrigated with treated wastewater. When treated wastewater was applied, there was significant interaction between WFPS and N input on N2O emission. Hence, our results indicated that irrigation with treated wastewater should cause great concern for increasing global warming potential due to enhanced emission of N2O and CO2.展开更多
In Tunisia,water scarcity is only adding pressure on water demand in agriculture.In the context of sustainable development goals,Tunisia has been reusing treated wastewater(TWW)as a renewable and inexpensive source fo...In Tunisia,water scarcity is only adding pressure on water demand in agriculture.In the context of sustainable development goals,Tunisia has been reusing treated wastewater(TWW)as a renewable and inexpensive source for soil fertigation and groundwater(GW)recharge.However,major risks can be expected when the irrigation water is of poor quality.This study aims for evaluating the potential risk of TWW and GW irrigation on soil parameters.Accordingly,we evaluated the suitability of water quality through the analysis of major and minor cations and anions,metallic trace elements(MTEs),and the sodium hazard by using the sodium adsorption ratio(SAR)and the soluble sodium percentage(SSP).The risk of soil sodicity was further assessed by SAR and the exchangeable sodium percentage(ESP).The degree of soil pollution caused by MTEs accumulation was evaluated using geoaccumulation index(Igeo)and pollution load index(PLI).Soil maps were generated using inverse spline interpolation in ArcGIS software.The results show that both water samples(i.e.,TWW and GW)are suitable for soil irrigation in terms of salinity(electrical conductivity<7000μS/cm)and sodicity(SAR<10.00;SSP<60.00%).However,the contents of PO_(4)^(3-),Cu^(2+),and Cd^(2+)exceed the maximum threshold values set by the national and other standards.Concerning the soil samples,the average levels of SAR and ESP are within the standards(SAR<13.00;ESP<15.00%).On the other hand,PLI results reveal moderate pollution in the plot irrigated with TWW and no to moderate pollution in the plot irrigated with GW.Igeo results indicate that Cu^(2+)is the metallic trace element(MTE)with the highest risk of soil pollution in both plots(Igeo>5.00),followed by Ni^(2+)and Pb^(2+).Nevertheless,Cd^(2+)presents the lowest risk of soil pollution(Igeo<0.00).Statistical data indicates that Ca^(2+),Na+,Ni^(2+),and Pb^(2+)are highly distributed in both plots(coefficient of variation>50.0%).This study shows that the use of imagery tools,such as ArcGIS,can provide important information for evaluating t展开更多
The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to av...The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.展开更多
The widespread emergence of antibiotic resistance among bacterial pathogens has become one of the most serious challenges in Ethiopia. This study determined the prevalence and drug resistance patterns of bacterial pat...The widespread emergence of antibiotic resistance among bacterial pathogens has become one of the most serious challenges in Ethiopia. This study determined the prevalence and drug resistance patterns of bacterial pathogens isolated from treated and untreated wastewater released from Ayder Referral Hospital in Northern Ethiopia. A cross sectional study design was conducted from September-December, 2015 in wastewater released from Ayder referral hospital. A total of 40 composite samples were aseptically collected, transported and processed for enumeration of indicator organisms, bacteriological identification and susceptibility testing following standard procedure. Data obtained were entered and analyzed using SPSS version 20. Mean heterotrophic plate count, total coliform count, fecal coliform count and E. coli count were found to be 1.6 × 106 CFU/mL, 2.2 × 106 CFU/100 mL, 2.0 × 105 CFU/100 mL and 1.1 × 104 CFU/100 mL from treated wastewater respectively. Among the total samples 134 bacterial isolates were detected and [84 (62.7%)] were from untreated wastewater and [50 (37.3%)] were from treated wastewater. The most frequently isolated bacteria from untreated wastewater samples was Klebsiella spp [14 (16.7%)] followed by S. aureus [13 (15.5%)] and P. aeruginosa [12 (14.3%)], similarly in treated wastewater samples Klebsiella spp [10 (20%)], P. aeruginosa [8 (16%)] and S. aureus [8 (16%)] were frequently detected. The overall multi-drug resistance (MDR) in this study was [79/134 (79.1%)]. MDR from untreated wastewater sample was [64/84 (76.2%)] while from treated wastewater sample was [42/50 (84%)] and shows significant difference with (COR: 1.64, 95% CI: 1.15 - 3.29, P: 0.001). It is concluded that treated hospital wastewater contains large numbers of antibiotic resistant bacteria. Therefore, there should be continuous monitoring and evaluation of the effluent quality of the ponds and chlorination of the final effluent should be developed.展开更多
Modeling and assessment of land use/cover and its impacts play a crucial role in land use planning and formulation of sustainable land use policies. In this study, remote sensing data were used within geographic infor...Modeling and assessment of land use/cover and its impacts play a crucial role in land use planning and formulation of sustainable land use policies. In this study, remote sensing data were used within geographic information system (GIS) to map and predict land use/cover changes near Amman, where half of Jordan’s population is living. Images of Landsat TM, ETM+ and OLI were processed and visually interpreted to derive land use/cover for the years 1983, 1989, 1994, 1998, 2003 and 2013. The output maps were analyzed by using GIS and cross-tabulated to quantify land use/cover changes for the different periods. The main changes that altered the character of land use/cover in the area were the expansion of urban areas and the recession of forests, agricultural areas (after 1998) and rangelands. The Markov chain was used to predict future land use/cover, based on the historical changes during 1983-2013. Results showed that prediction of land use/cover would depend on the time interval of the multi-temporal satellite imagery from which the probability of change was derived. The error of prediction was in the range of 2%-5%, with more accurate prediction for urbanization and less accurate prediction for agricultural areas. The trends of land use/cover change showed that urban areas would expand at the expense of agricultural land and would form 33% of the study area (50 km×60 km) by year 2043. The impact of these land use/cover changes would be the increased water demand and wastewater generation in the future.展开更多
Mornag Plain is a coastal area of the Mediterranean basin, which has undergone an agricultural industrial boom. The aim of this study was to investigate the different water qualities used for irrigation on heavy metal...Mornag Plain is a coastal area of the Mediterranean basin, which has undergone an agricultural industrial boom. The aim of this study was to investigate the different water qualities used for irrigation on heavy metal mobility in these polluted agricultural soils. The geo-accumulation indices for heavy metals (Ni, Cr, Pb, Cd, Cu, and Zn) revealed that industrial activities and used treated wastewater (TWW) contributed to soil pollution, and water irrigation always decreased this contamination. After long-term use of different water types, high perturbation of heavy metal redistribution has occurred. Groundwater use altered all heavy metal redistributions in the irrigated soil among various soil-solid and soil-solution fractions, as compared to the unirrigated soil. Slight acid water use transferred some metals from different solid phase components into water-soluble and exchangeable fractions. However, TWW use transformed some Ni, Cr, Cd, Cu, and Zn from water-soluble and exchangeable fractions to less labile fractions, particularly into organically bound fractions. Reuse of conventional water within the same soil decreased the whole soil redistribution index values, indicating tendency to return to the pattern of distribution of groundwater-irrigated soil.展开更多
A study was conducted in the Bekaa valley of Lebanon aiming to produce spinach leaves with treated effluent from Joub Janine plant under two growing seasons. Two experiments were laid out in a randomized complete bloc...A study was conducted in the Bekaa valley of Lebanon aiming to produce spinach leaves with treated effluent from Joub Janine plant under two growing seasons. Two experiments were laid out in a randomized complete block design. The effect of water quality on the qualitative, quantitative aspects and microbiological contamination of leaves was assessed. The results showed that the treated wastewater from Joub Janine plant was of category III. The highest mean marketable yields was recorded for T7 (4727 g·m-2) followed by T6 (3533 g·m-2) that were drip irrigated with treated wastewater. The uptake of K, Mg, Na and Cl was significantly 49.09%, 30.20%, 96.79% and 33.20%, respectively, higher in the spring than in autumn. The nitrate levels in all treatments and seasons were below the maximum level in foodstuffs as provided by the European Commission regulations. For the lipophilic fraction, there was no significant difference among treatments and also among treatments and seasons interacting together and the highest hydrophilic fraction and total phenols levels recorded for the autumn rather than the summer season. In general, pathogenic bacteria was absent on spinach leaves for all treatments and growing seasons.展开更多
The concern of this study is determine the quality of soil when irrigation used treated water and wastewater in comparison with soil irrigated with tap water on some chemical and physical soil properties. The experime...The concern of this study is determine the quality of soil when irrigation used treated water and wastewater in comparison with soil irrigated with tap water on some chemical and physical soil properties. The experiment components were three trials carried out under greenhouse conditions, 10 pots for each trial. The first trial irrigated with tap water, the second trial irrigated by treated water and the third trial irrigated with wastewater. The experiment conducted to study the impact of water types on some soil physical and chemical properties. The experiment included important analysis for water and soil before and after irrigation. The results showed that the values for electrical conductivity (EC) were 0.850, 308 and 324 μs/cm for the treated soil with tap water, treated water and wastewater, respectively. The variation of pH values seems to be approximately constant between the different of water used. The percent of organic matter (OM) in soils receiving treated water and wastewater 4.7% and 5.2% respectively were higher than values in soil treated with tap water 3%. The same trend was in organic carbon (OC) in soils receiving treated water and wastewater 58.5% and 89% respectively, while soil treated with tap water showed the lowest value 27.7%. Soil particle density (SPD) increased significantly in both water treatments were the values was 2 g/cm<sup>3</sup> in tap water but increased value 2.8 g/cm<sup>3</sup> and 3.3 g/cm<sup>3</sup> in treated water and wastewater used respectively. The Bulk Density (BD) values range 1.1 g/cm<sup>3</sup> in soil irrigated with tap water 1.5 g/cm<sup>3</sup> in soil irrigated with treated water and 1.85 g/cm<sup>3</sup> in soil irrigated with treated water. The results of soil analysis before and after planting showed that most of the values increased for the physical and chemical soil properties.展开更多
The use of waste materials as low-cost adsorbents is attractive due to their contribution in the reduction of costs for waste disposal, therefore contributing to environmental protection and most importantly, offers a...The use of waste materials as low-cost adsorbents is attractive due to their contribution in the reduction of costs for waste disposal, therefore contributing to environmental protection and most importantly, offers an attractive potential alternative to their conventional methods of removal of toxic ions from wastewater. Eggshells are naturally occurring and an abundant biomass that has proven to offer an economic solution for toxic ions removal. The eggshell biomass was treated with acetic acid (vinegar). Nickel (II) and Cobalt (II) ions were selected as model ions to demonstrate the potential of eggshell waste in removing excess toxic heavy metal ions from wastewater. All the experiments were carried out in batch process with laboratory prepared samples. Multivariate optimization method was used to identify factors affecting adsorption. These factors included metal ion concentration, pH, contact time and biomass dosage on removal of nickel and cobalt from wastewater effluent was investigated. Two-level fraction factorial and central composite design were used for optimization methods. Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Scanning Electron Microscopy coupled with Energy-dispersive X-ray spectroscopy were used to study physical properties of the waste material. The percentage removal of Nickel (II) and Cobalt (II) was 78.70 ± 1.02 and 76.53 ± 1.21 respectively. Vinegar-treated eggshells were proposed as eco-friendly, cheap, easily available and an efficient method for removal of heavy metals from the environment.展开更多
Management of various water resources has become a pivotal need for all catchments and sub-catchements in Jordan. Storing treated wastewater applied in reservoirs that originally constructed to store flood and base fl...Management of various water resources has become a pivotal need for all catchments and sub-catchements in Jordan. Storing treated wastewater applied in reservoirs that originally constructed to store flood and base flow water in the country. This practice has proved detrimental to the originally good quality reservoir waters, leading to additional water quality deterioration such as eutrophication issue. Hence, separating treated wastewater from flood and base flow waters to guarantee the availability of better quality waters for higher quality uses such as drinking or recreation. This study focuses on the dams constructed in Kafrain and Shueib catchments, lying west and northwest of Amman. The results of hydrological, hydrogeological, geological, water quality and terrain measurements using Remote Sensing, Geographical Information System (GIS) and Digital Elevation Models (DEM) show that there are nine potential dam sites in the two catchments to construct. In Shueib catchment, two proposed dam sites were selected as suitable dams for fresh water harvesting and groundwater artificial recharge. While, two suggested dam sites are located downstream of Al-Salt and Fuhais wastewater treatment plants for treated wastewater collection. In Kafrain catchment, three proposed dam sites were selected as suitable dams for fresh water harvesting and groundwater artificial recharge. Whereas, two suggested dam sites are located downstream of Wadi Sir wastewater treatment plant, hereby, it can be used to collect the treated wastewater. The study is expected to serve as an example for other catchments in Jordan and elsewhere, especially in water scarcity areas where treated waste water is stored together with flood and base flow waters.展开更多
This study explored the hydrological and economic feasibility of managed aquifer recharge(MAR) using tertiary treated wastewater(TWW) to mitigate salinity in the coastal aquifer of Jamma, Oman. A steady-state groundwa...This study explored the hydrological and economic feasibility of managed aquifer recharge(MAR) using tertiary treated wastewater(TWW) to mitigate salinity in the coastal aquifer of Jamma, Oman. A steady-state groundwater flow and transport model, using MODFLOW software, was developed and calibrated. Different managerial scenarios were simulated and the results reveal that the Jamma aquifer will be further deteriorated in the next 20 a if it remains unmanaged. The groundwater table will decline further by more than 3 m on average; and the iso-concentration salinity line of 1500 mg/L will advance 2.7 km inland, which will severely affect the farming activities in the area. However, MAR using TWW when integrated with the management of groundwater abstraction(e.g., using modern irrigation systems to reduce the abstraction rate) becomes hydrologically feasible to augment the aquifer storage and control seawater intrusion, and hence improves the farming activities. The results indicate that:(1) injecting TWW in the vicinity of irrigation wells(Scenario A2);(2) investing in smart water meters and online control of pumping from the wells to reduce the abstraction rate by 25%(Scenario B); and(3) a combination of both(Scenario B2) are feasible scenarios with positive net present values. Recharge in upstream areas is found not economically feasible because of the very high investment cost of the installation of pipes to transport the TWW over a distance of 12.5 km. Because of securing funds are challenging, Scenario B would be the best option and the second-best option is Scenario A2. Scenario B2 has the lowest net benefit investment ratio and is very attractive because it entails integrated demand and supply management of groundwater. It is required to reduce pumping and to invest in injecting TWW to improve groundwater quality in the vicinity of irrigation wells and to form a hydrological barrier to control seawater intrusion in the long run.展开更多
基金The ELECTRA project has received funding from European Union’s Horizon 2020 research and innovation programunder grant agreement No.826244Eduardo Bolea-Fernandez thanks FWO-Vlaanderen for his postdoctoral grant(No.12ZA320N),The authors would like to thank Victor Lobanov,Mingsheng Jia,and Hira Khan for critically reading the manuscript.
文摘Biogenic palladium nanoparticles(bio-Pd NPs)are used for the reductive transformation and/or dehalogenation of persistent micropollutants.In this work,H2(electron donor)was produced in situ by an electrochemical cell,permitting steered production of differently sized bio-Pd NPs.The catalytic activity was first assessed by the degradation of methyl orange.The NPs showing the highest catalytic activity were selected for the removal of micropollutants from secondary treated municipal wastewater.The synthesis at different H2 flow rates(0.310 L/hr or 0.646 L/hr)influenced the bio-Pd NPs size.The NPs produced over 6 hr at a lowH2 flow rate had a larger size(D50=39.0 nm)than those produced in 3 hr at a high H2 flow rate(D50=23.2 nm).Removal of 92.1%and 44.3%of methyl orange was obtained after 30 min for the NPs with sizes of 39.0 nm and 23.2 nm,respectively.Bio-Pd NPs of 39.0 nm were used to treat micropollutants present in secondary treated municipal wastewater at concentrations ranging fromμg/L to ng/L.Effective removal of 8 compounds was observed:ibuprofen(69.5%)<sulfamethoxazole(80.6%)<naproxen(81.4%)<furosemide(89.7%)<citalopram(91.7%)<diclofenac(91.9%)<atorvastatin(>94.3%)<lorazepam(97.2%).Re-moval of fluorinated antibiotics occurred at>90%efficiency.Overall,these data indicate that the size,and thus the catalytic activity of the NPs can be steered and that the removal of challengingmicropollutants at environmentally relevant concentrations can be achieved through the use of bio-Pd NPs.
基金funded by the National Natural Science Foundation of China (50979107)
文摘The reuse of treated wastewater in agricultural systems could partially help alleviate water resource shortages in developing countries. Treated wastewater differs from fresh water in that it has higher concentrations of salts, Escherichia coli and presence of dissolved organic matter, and inorganic N after secondary treatment, among others. Its application could thus cause environmental consequences such as soil salinization, ammonia volatilization, and greenhouse gas emissions. In an incubation experiment, we evaluated the characteristics and effects of water-filled pore space (WFPS) and N input on the emissions of nitrous oxide (N2O) and carbon dioxide (CO2) from silt loam soil receiving treated wastewater. Irrigation with treated wastewater (vs. distilled water) significantly increased cumulative N2O emission in soil (117.97 μg N kg-1). Cumulative N2O emissions showed an exponentially increase with the increasing WFPS in unamended soil, but the maximum occurred in the added urea soil incubated at 60% WFPS. N2O emissions caused by irrigation with treated wastewater combined with urea-N fertilization did not simply add linearly, but significant interaction (P〈0.05) caused lower emissions than the production of N2O from the cumulative effects of treated wastewater and fertilizer N. Moreover, a significant impact on cumulative CO2 emission was measured in soil irrigated with treated wastewater. When treated wastewater was applied, there was significant interaction between WFPS and N input on N2O emission. Hence, our results indicated that irrigation with treated wastewater should cause great concern for increasing global warming potential due to enhanced emission of N2O and CO2.
文摘In Tunisia,water scarcity is only adding pressure on water demand in agriculture.In the context of sustainable development goals,Tunisia has been reusing treated wastewater(TWW)as a renewable and inexpensive source for soil fertigation and groundwater(GW)recharge.However,major risks can be expected when the irrigation water is of poor quality.This study aims for evaluating the potential risk of TWW and GW irrigation on soil parameters.Accordingly,we evaluated the suitability of water quality through the analysis of major and minor cations and anions,metallic trace elements(MTEs),and the sodium hazard by using the sodium adsorption ratio(SAR)and the soluble sodium percentage(SSP).The risk of soil sodicity was further assessed by SAR and the exchangeable sodium percentage(ESP).The degree of soil pollution caused by MTEs accumulation was evaluated using geoaccumulation index(Igeo)and pollution load index(PLI).Soil maps were generated using inverse spline interpolation in ArcGIS software.The results show that both water samples(i.e.,TWW and GW)are suitable for soil irrigation in terms of salinity(electrical conductivity<7000μS/cm)and sodicity(SAR<10.00;SSP<60.00%).However,the contents of PO_(4)^(3-),Cu^(2+),and Cd^(2+)exceed the maximum threshold values set by the national and other standards.Concerning the soil samples,the average levels of SAR and ESP are within the standards(SAR<13.00;ESP<15.00%).On the other hand,PLI results reveal moderate pollution in the plot irrigated with TWW and no to moderate pollution in the plot irrigated with GW.Igeo results indicate that Cu^(2+)is the metallic trace element(MTE)with the highest risk of soil pollution in both plots(Igeo>5.00),followed by Ni^(2+)and Pb^(2+).Nevertheless,Cd^(2+)presents the lowest risk of soil pollution(Igeo<0.00).Statistical data indicates that Ca^(2+),Na+,Ni^(2+),and Pb^(2+)are highly distributed in both plots(coefficient of variation>50.0%).This study shows that the use of imagery tools,such as ArcGIS,can provide important information for evaluating t
基金supported by the State Basic Research Development Program(973 Program)of China[no.2010CB428805]the Beijing Important Scientific and Technological Program[DO7050601510703]
文摘The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.
文摘The widespread emergence of antibiotic resistance among bacterial pathogens has become one of the most serious challenges in Ethiopia. This study determined the prevalence and drug resistance patterns of bacterial pathogens isolated from treated and untreated wastewater released from Ayder Referral Hospital in Northern Ethiopia. A cross sectional study design was conducted from September-December, 2015 in wastewater released from Ayder referral hospital. A total of 40 composite samples were aseptically collected, transported and processed for enumeration of indicator organisms, bacteriological identification and susceptibility testing following standard procedure. Data obtained were entered and analyzed using SPSS version 20. Mean heterotrophic plate count, total coliform count, fecal coliform count and E. coli count were found to be 1.6 × 106 CFU/mL, 2.2 × 106 CFU/100 mL, 2.0 × 105 CFU/100 mL and 1.1 × 104 CFU/100 mL from treated wastewater respectively. Among the total samples 134 bacterial isolates were detected and [84 (62.7%)] were from untreated wastewater and [50 (37.3%)] were from treated wastewater. The most frequently isolated bacteria from untreated wastewater samples was Klebsiella spp [14 (16.7%)] followed by S. aureus [13 (15.5%)] and P. aeruginosa [12 (14.3%)], similarly in treated wastewater samples Klebsiella spp [10 (20%)], P. aeruginosa [8 (16%)] and S. aureus [8 (16%)] were frequently detected. The overall multi-drug resistance (MDR) in this study was [79/134 (79.1%)]. MDR from untreated wastewater sample was [64/84 (76.2%)] while from treated wastewater sample was [42/50 (84%)] and shows significant difference with (COR: 1.64, 95% CI: 1.15 - 3.29, P: 0.001). It is concluded that treated hospital wastewater contains large numbers of antibiotic resistant bacteria. Therefore, there should be continuous monitoring and evaluation of the effluent quality of the ponds and chlorination of the final effluent should be developed.
文摘Modeling and assessment of land use/cover and its impacts play a crucial role in land use planning and formulation of sustainable land use policies. In this study, remote sensing data were used within geographic information system (GIS) to map and predict land use/cover changes near Amman, where half of Jordan’s population is living. Images of Landsat TM, ETM+ and OLI were processed and visually interpreted to derive land use/cover for the years 1983, 1989, 1994, 1998, 2003 and 2013. The output maps were analyzed by using GIS and cross-tabulated to quantify land use/cover changes for the different periods. The main changes that altered the character of land use/cover in the area were the expansion of urban areas and the recession of forests, agricultural areas (after 1998) and rangelands. The Markov chain was used to predict future land use/cover, based on the historical changes during 1983-2013. Results showed that prediction of land use/cover would depend on the time interval of the multi-temporal satellite imagery from which the probability of change was derived. The error of prediction was in the range of 2%-5%, with more accurate prediction for urbanization and less accurate prediction for agricultural areas. The trends of land use/cover change showed that urban areas would expand at the expense of agricultural land and would form 33% of the study area (50 km×60 km) by year 2043. The impact of these land use/cover changes would be the increased water demand and wastewater generation in the future.
文摘Mornag Plain is a coastal area of the Mediterranean basin, which has undergone an agricultural industrial boom. The aim of this study was to investigate the different water qualities used for irrigation on heavy metal mobility in these polluted agricultural soils. The geo-accumulation indices for heavy metals (Ni, Cr, Pb, Cd, Cu, and Zn) revealed that industrial activities and used treated wastewater (TWW) contributed to soil pollution, and water irrigation always decreased this contamination. After long-term use of different water types, high perturbation of heavy metal redistribution has occurred. Groundwater use altered all heavy metal redistributions in the irrigated soil among various soil-solid and soil-solution fractions, as compared to the unirrigated soil. Slight acid water use transferred some metals from different solid phase components into water-soluble and exchangeable fractions. However, TWW use transformed some Ni, Cr, Cd, Cu, and Zn from water-soluble and exchangeable fractions to less labile fractions, particularly into organically bound fractions. Reuse of conventional water within the same soil decreased the whole soil redistribution index values, indicating tendency to return to the pattern of distribution of groundwater-irrigated soil.
文摘A study was conducted in the Bekaa valley of Lebanon aiming to produce spinach leaves with treated effluent from Joub Janine plant under two growing seasons. Two experiments were laid out in a randomized complete block design. The effect of water quality on the qualitative, quantitative aspects and microbiological contamination of leaves was assessed. The results showed that the treated wastewater from Joub Janine plant was of category III. The highest mean marketable yields was recorded for T7 (4727 g·m-2) followed by T6 (3533 g·m-2) that were drip irrigated with treated wastewater. The uptake of K, Mg, Na and Cl was significantly 49.09%, 30.20%, 96.79% and 33.20%, respectively, higher in the spring than in autumn. The nitrate levels in all treatments and seasons were below the maximum level in foodstuffs as provided by the European Commission regulations. For the lipophilic fraction, there was no significant difference among treatments and also among treatments and seasons interacting together and the highest hydrophilic fraction and total phenols levels recorded for the autumn rather than the summer season. In general, pathogenic bacteria was absent on spinach leaves for all treatments and growing seasons.
文摘The concern of this study is determine the quality of soil when irrigation used treated water and wastewater in comparison with soil irrigated with tap water on some chemical and physical soil properties. The experiment components were three trials carried out under greenhouse conditions, 10 pots for each trial. The first trial irrigated with tap water, the second trial irrigated by treated water and the third trial irrigated with wastewater. The experiment conducted to study the impact of water types on some soil physical and chemical properties. The experiment included important analysis for water and soil before and after irrigation. The results showed that the values for electrical conductivity (EC) were 0.850, 308 and 324 μs/cm for the treated soil with tap water, treated water and wastewater, respectively. The variation of pH values seems to be approximately constant between the different of water used. The percent of organic matter (OM) in soils receiving treated water and wastewater 4.7% and 5.2% respectively were higher than values in soil treated with tap water 3%. The same trend was in organic carbon (OC) in soils receiving treated water and wastewater 58.5% and 89% respectively, while soil treated with tap water showed the lowest value 27.7%. Soil particle density (SPD) increased significantly in both water treatments were the values was 2 g/cm<sup>3</sup> in tap water but increased value 2.8 g/cm<sup>3</sup> and 3.3 g/cm<sup>3</sup> in treated water and wastewater used respectively. The Bulk Density (BD) values range 1.1 g/cm<sup>3</sup> in soil irrigated with tap water 1.5 g/cm<sup>3</sup> in soil irrigated with treated water and 1.85 g/cm<sup>3</sup> in soil irrigated with treated water. The results of soil analysis before and after planting showed that most of the values increased for the physical and chemical soil properties.
文摘The use of waste materials as low-cost adsorbents is attractive due to their contribution in the reduction of costs for waste disposal, therefore contributing to environmental protection and most importantly, offers an attractive potential alternative to their conventional methods of removal of toxic ions from wastewater. Eggshells are naturally occurring and an abundant biomass that has proven to offer an economic solution for toxic ions removal. The eggshell biomass was treated with acetic acid (vinegar). Nickel (II) and Cobalt (II) ions were selected as model ions to demonstrate the potential of eggshell waste in removing excess toxic heavy metal ions from wastewater. All the experiments were carried out in batch process with laboratory prepared samples. Multivariate optimization method was used to identify factors affecting adsorption. These factors included metal ion concentration, pH, contact time and biomass dosage on removal of nickel and cobalt from wastewater effluent was investigated. Two-level fraction factorial and central composite design were used for optimization methods. Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, and Scanning Electron Microscopy coupled with Energy-dispersive X-ray spectroscopy were used to study physical properties of the waste material. The percentage removal of Nickel (II) and Cobalt (II) was 78.70 ± 1.02 and 76.53 ± 1.21 respectively. Vinegar-treated eggshells were proposed as eco-friendly, cheap, easily available and an efficient method for removal of heavy metals from the environment.
文摘Management of various water resources has become a pivotal need for all catchments and sub-catchements in Jordan. Storing treated wastewater applied in reservoirs that originally constructed to store flood and base flow water in the country. This practice has proved detrimental to the originally good quality reservoir waters, leading to additional water quality deterioration such as eutrophication issue. Hence, separating treated wastewater from flood and base flow waters to guarantee the availability of better quality waters for higher quality uses such as drinking or recreation. This study focuses on the dams constructed in Kafrain and Shueib catchments, lying west and northwest of Amman. The results of hydrological, hydrogeological, geological, water quality and terrain measurements using Remote Sensing, Geographical Information System (GIS) and Digital Elevation Models (DEM) show that there are nine potential dam sites in the two catchments to construct. In Shueib catchment, two proposed dam sites were selected as suitable dams for fresh water harvesting and groundwater artificial recharge. While, two suggested dam sites are located downstream of Al-Salt and Fuhais wastewater treatment plants for treated wastewater collection. In Kafrain catchment, three proposed dam sites were selected as suitable dams for fresh water harvesting and groundwater artificial recharge. Whereas, two suggested dam sites are located downstream of Wadi Sir wastewater treatment plant, hereby, it can be used to collect the treated wastewater. The study is expected to serve as an example for other catchments in Jordan and elsewhere, especially in water scarcity areas where treated waste water is stored together with flood and base flow waters.
基金supported by the USAID (United States Agency for International Development)-FABRI (Further Advancing the Blue Revolution Initiative) and the MENA NWC (Middle East and North Africa Network of Water Centers of Excellence) (1001626-104)the support of Sultan Qaboos University+1 种基金the Ministry of Regional MunicipalitiesWater Resources in Oman
文摘This study explored the hydrological and economic feasibility of managed aquifer recharge(MAR) using tertiary treated wastewater(TWW) to mitigate salinity in the coastal aquifer of Jamma, Oman. A steady-state groundwater flow and transport model, using MODFLOW software, was developed and calibrated. Different managerial scenarios were simulated and the results reveal that the Jamma aquifer will be further deteriorated in the next 20 a if it remains unmanaged. The groundwater table will decline further by more than 3 m on average; and the iso-concentration salinity line of 1500 mg/L will advance 2.7 km inland, which will severely affect the farming activities in the area. However, MAR using TWW when integrated with the management of groundwater abstraction(e.g., using modern irrigation systems to reduce the abstraction rate) becomes hydrologically feasible to augment the aquifer storage and control seawater intrusion, and hence improves the farming activities. The results indicate that:(1) injecting TWW in the vicinity of irrigation wells(Scenario A2);(2) investing in smart water meters and online control of pumping from the wells to reduce the abstraction rate by 25%(Scenario B); and(3) a combination of both(Scenario B2) are feasible scenarios with positive net present values. Recharge in upstream areas is found not economically feasible because of the very high investment cost of the installation of pipes to transport the TWW over a distance of 12.5 km. Because of securing funds are challenging, Scenario B would be the best option and the second-best option is Scenario A2. Scenario B2 has the lowest net benefit investment ratio and is very attractive because it entails integrated demand and supply management of groundwater. It is required to reduce pumping and to invest in injecting TWW to improve groundwater quality in the vicinity of irrigation wells and to form a hydrological barrier to control seawater intrusion in the long run.