The vertex connectivity k(G) of a graph G is the minimum number of nodes whose deletion disconnects it. Graph connectivity is one of the most fundamental problems in graph theory. In this paper, we designed an O(n2) t...The vertex connectivity k(G) of a graph G is the minimum number of nodes whose deletion disconnects it. Graph connectivity is one of the most fundamental problems in graph theory. In this paper, we designed an O(n2) time algorithm to solve connectivity problem on circular trapezoid graphs.展开更多
Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design...Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.展开更多
文摘The vertex connectivity k(G) of a graph G is the minimum number of nodes whose deletion disconnects it. Graph connectivity is one of the most fundamental problems in graph theory. In this paper, we designed an O(n2) time algorithm to solve connectivity problem on circular trapezoid graphs.
文摘Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.