Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided com...Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.展开更多
The transverse stiffness and vibration characteristics of discontinuous beams can significantly differ from those of continuous beams given that an abrupt change in stiffness may occur at the interface of the former.I...The transverse stiffness and vibration characteristics of discontinuous beams can significantly differ from those of continuous beams given that an abrupt change in stiffness may occur at the interface of the former.In this study,the equations for the deflection curve and vibration frequencies of a simply supported discontinuous beam under axial loads are derived analytically on the basis of boundary,continuity,and deformation compatibility conditions by using equivalent spring models.The equation for the deflection curve is solved using undetermined coefficient methods.The normal function of the transverse vibration equation is obtained by separating variables.The differential equations for the beam that consider moments of inertia,shearing effects,and gyroscopic moments are investigated using the transfer matrix method.The deflection and vibration frequencies of the discontinuous beam are studied under different axial loads and connection spring stiffness.Results show that deflection decreases and vibration frequencies increase exponentially with increasing connection spring stiffness.Moreover,both variables remain steady when connection spring stiffness reaches a considerable value.Lastly,an experimental study is conducted to investigate the vibration characteristics of a discontinuous beam with a curvic coupling,and the results exhibit a good match with the proposed model.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.50909059,51279222)
文摘Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.
基金Support provided by the Ministry of Industry and Information Technology of China(Grant No.JSZL2016204B102)the National Natural Science Foundation of China(Grant Nos.51575022 and 11772022).
文摘The transverse stiffness and vibration characteristics of discontinuous beams can significantly differ from those of continuous beams given that an abrupt change in stiffness may occur at the interface of the former.In this study,the equations for the deflection curve and vibration frequencies of a simply supported discontinuous beam under axial loads are derived analytically on the basis of boundary,continuity,and deformation compatibility conditions by using equivalent spring models.The equation for the deflection curve is solved using undetermined coefficient methods.The normal function of the transverse vibration equation is obtained by separating variables.The differential equations for the beam that consider moments of inertia,shearing effects,and gyroscopic moments are investigated using the transfer matrix method.The deflection and vibration frequencies of the discontinuous beam are studied under different axial loads and connection spring stiffness.Results show that deflection decreases and vibration frequencies increase exponentially with increasing connection spring stiffness.Moreover,both variables remain steady when connection spring stiffness reaches a considerable value.Lastly,an experimental study is conducted to investigate the vibration characteristics of a discontinuous beam with a curvic coupling,and the results exhibit a good match with the proposed model.