期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
大倾角采煤技术的应用与推广 被引量:13
1
作者 张士钰 《科技情报开发与经济》 2005年第13期287-288,共2页
通过对大倾角采煤可能带来问题的分析,结合实际,提出合理、简便、有效的解决办法。总结出大倾角采煤技术的实施要点,并推导出可供参考的公式,拓宽了倾斜长壁采煤方法的适用范围,为大倾角采煤工作面采用倾斜长壁采煤方法提供了新思路。
关键词 采煤技术 地质构造 煤层倾角 运输机 支架
下载PDF
刮板输送机中部槽的耐磨处理 被引量:13
2
作者 张超军 张志民 王宏洋 《煤矿机械》 北大核心 2007年第6期109-110,共2页
针对刮板输送机中部槽各主要部件耐磨能力不一致的问题,简单介绍如何通过普通的焊接处理提高中部槽的使用寿命。
关键词 输送机 耐磨 中部槽
下载PDF
Verification of neutron-induced fission product yields evaluated by a tensor decompsition model in transport-burnup simulations 被引量:4
3
作者 Qu‑Fei Song Long Zhu +1 位作者 Hui Guo Jun Su 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期190-201,共12页
Neutron-induced fission is an important research object in basic science.Moreover,its product yield data are an indispensable nuclear data basis in nuclear engineering and technology.The fission yield tensor decomposi... Neutron-induced fission is an important research object in basic science.Moreover,its product yield data are an indispensable nuclear data basis in nuclear engineering and technology.The fission yield tensor decomposition(FYTD)model has been developed and used to evaluate the independent fission product yield.In general,fission yield data are verified by the direct comparison of experimental and evaluated data.However,such direct comparison cannot reflect the impact of the evaluated data on application scenarios,such as reactor transport-burnup simulation.Therefore,this study applies the evaluated fission yield data in transport-burnup simulation to verify their accuracy and possibility of application.Herein,the evaluated yield data of235U and239Pu are applied in the transport-burnup simulation of a pressurized water reactor(PWR)and sodium-cooled fast reactor(SFR)for verification.During the reactor operation stage,the errors in pin-cell reactivity caused by the evaluated fission yield do not exceed 500 and 200 pcm for the PWR and SFR,respectively.The errors in decay heat and135Xe and149Sm concentrations during the short-term shutdown of the PWR are all less than 1%;the errors in decay heat and activity of the spent fuel of the PWR and SFR during the temporary storage stage are all less than 2%.For the PWR,the errors in important nuclide concentrations in spent fuel,such as90Sr,137Cs,85Kr,and99Tc,are all less than 6%,and a larger error of 37%is observed on129I.For the SFR,the concentration errors of ten important nuclides in spent fuel are all less than 16%.A comparison of various aspects reveals that the transport-burnup simulation results using the FYTD model evaluation have little difference compared with the reference results using ENDF/B-Ⅷ.0 data.This proves that the evaluation of the FYTD model may have application value in reactor physical analysis. 展开更多
关键词 Fission product yield Tensor decomposition transport-burnup simulation machine learning
下载PDF
票价调整对公交出行者出行选择的影响分析 被引量:7
4
作者 翁剑成 涂强 +1 位作者 林鹏飞 徐硕 《武汉理工大学学报(交通科学与工程版)》 2017年第3期419-424,429,共7页
分析了公共交通调价前后客运量的宏观时空变化特征,开展面向公交出行者的出行选择调查.结果表明,公交票价调整对公共交通通勤出行者和非通勤出行者的影响程度和出行方式转移特征具有显著差异.以公交出行者刷卡时空特征向量为基础,提出... 分析了公共交通调价前后客运量的宏观时空变化特征,开展面向公交出行者的出行选择调查.结果表明,公交票价调整对公共交通通勤出行者和非通勤出行者的影响程度和出行方式转移特征具有显著差异.以公交出行者刷卡时空特征向量为基础,提出了基于机器学习的通勤出行者判别方法,并利用北京市每日约1 300万的多模式公共交通刷卡数据,较精确地实现了通勤出行者和非通勤出行者的类型划分,分类准确度达到94.24%.利用不同时期的个体出行数据,定量分析了公共交通票制票价调整对通勤和非通勤出行者的出行频次、公交出行方式选择的短期和长期影响差异.短期影响看,通勤出行者中地铁出行和地面公交出行次数明显下降的人数比例分别为14.90%和25.47%,3.73%的通勤出行者存在轨道交通向地面公交的转移;而非通勤出行者中,轨道交通和地面公交出行次数明显下降的人数比例分别为21.32%和26.96%,非通勤出行者轨道出行的下降比例显著高于通勤出行者.长期影响看,仅有4.15%的轨道交通通勤出行者出行次数依然有明显下降,而依然有35%左右的出行者地面公交出行次数较调价前显著下降,表明调价对地面公交出行者的影响更具有持续性. 展开更多
关键词 公共交通 票价调整 通勤出行者 机器学习 出行选择
下载PDF
基于激光雷达观测的呼伦贝尔一次沙尘过程分析
5
作者 郝峰 徐曼 +4 位作者 谷雨 周兴军 田永莉 马丽 李荣忠 《气候与环境研究》 CSCD 北大核心 2024年第2期205-215,共11页
基于测风激光雷达和地面常规观测资料,借助机器学习算法以及HYSPLIT(Hybrid Single-Particle LagrangianIntegrated Trajectory)模型分析了发生在呼伦贝尔的一次典型的沙尘天气过程。研究表明,本次沙尘起始时南风突增,风向转西南偏南风... 基于测风激光雷达和地面常规观测资料,借助机器学习算法以及HYSPLIT(Hybrid Single-Particle LagrangianIntegrated Trajectory)模型分析了发生在呼伦贝尔的一次典型的沙尘天气过程。研究表明,本次沙尘起始时南风突增,风向转西南偏南风后风速降低,传输减弱,当风向转西风时,沙尘传输增强,在西风降低后沙尘传输结束。沙尘传输期间,湍流运动偏弱,混合层高度抬升受限。借助机器学习分粒径计算发现,沙尘前期传输以粗颗粒为主,后期粗、细颗粒物均有明显增长。不同传输时期粒径的不同,暗示沙尘的源可能发生变化,后向轨迹揭示沙尘传输前期来自蒙古国西北部,经过我国锡林郭勒后北上到达呼伦贝尔;而后期沙尘是从俄罗斯南部直接进入呼伦贝尔。最后研究发现,沙尘前至起始时刻,总传输通量对沙尘的响应早于地面颗粒物浓度变化,且沙尘期间总传输通量值显著高于沙尘前和沙尘后。因此,总传输通量变化以及阈值设定可为沙尘预警的新参考指标。 展开更多
关键词 沙尘过程 测风激光雷达 机器学习 后向轨迹分析
下载PDF
An artificial intelligence approach for particle transport velocity prediction in horizontal flows
6
作者 Haoyu Chen Zhiguo Wang +1 位作者 Hai Huang Jun Zhang 《Particuology》 SCIE EI CAS CSCD 2024年第9期234-250,共17页
Particle entrainment is an inevitable phenomenon in pipeline systems,especially during the development and extraction phases of oil and gas wells.Accurately predicting the critical velocity for particle transport is a... Particle entrainment is an inevitable phenomenon in pipeline systems,especially during the development and extraction phases of oil and gas wells.Accurately predicting the critical velocity for particle transport is a key focus for implementing effective sand control management.This work presents a semi-supervised learning–deep hybrid kernel extreme learning machine(SSL-DHKELM)model for predicting the critical velocity,which integrates multiple machine learning theories including the deep learning approach,which is adept at advanced feature extraction.Meanwhile,the SSL framework enhances the model's capabilities when data availability is limited.An improved slime mould algorithm is also employed to optimize the model's hyperparameters.The proposed model has high accuracy on both the sample dataset and out-of-sample data.When trained with only 10%of the data,the model's error still did not increase significantly.Additionally,this model achieves superior predictive accuracy compared to existing mechanistic models,demonstrating its impressive performance and robustness. 展开更多
关键词 Particle transport Critical velocity Deep learning Semi-supervised learning Extreme learning machine
原文传递
考虑代价敏感的高速公路偷逃费行为识别模型
7
作者 赵建东 许慧玲 +2 位作者 吕行 李平安 黄诗音 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期10-19,共10页
为有效提升高速公路车辆偷逃通行费稽查效率,基于电子不停车收费(ETC)数据,结合K最近邻(KNN)和集成学习(Adaboost)算法及代价敏感学习机制,提出一种高速公路车辆偷逃费行为识别模型。针对原始ETC收费流水数据量大且冗余的特点,制定数据... 为有效提升高速公路车辆偷逃通行费稽查效率,基于电子不停车收费(ETC)数据,结合K最近邻(KNN)和集成学习(Adaboost)算法及代价敏感学习机制,提出一种高速公路车辆偷逃费行为识别模型。针对原始ETC收费流水数据量大且冗余的特点,制定数据离散化和标准化处理规则,修复并规范数据形态后,提取两类逃费特征。通过分析ETC数据集遴选大车小标等7种逃费类型作为主要研究对象。针对逃费数据“高维”特点导致的模型分类效率低问题,通过Pearson与Spearman相关性分析和ReliefF重要性分析选取表现逃费特性的最佳特征子集。针对逃费车辆与正常车辆的类别“不平衡”现象所引发的模型过拟合问题,构建组合分类模型,在Adaboost算法中将KNN作为基分类器,先通过TomekLinks欠采样缓解不同类边界模糊问题,再引入代价敏感学习机制,提高模型对少数类(逃费车)的重视程度来缓解对多数类(正常车)的判别倾向。最后,对比不同分类模型对各类逃费事件的识别效果,验证融合代价敏感学习机制的KNN-Adaboost模型的性能。结果表明,该研究提出的模型识别精确率达0.98,召回率达0.96,F1系数达0.97,Kappa系数达0.95,较其他模型能更好地解决样本类不均衡问题,对少数类样本具有较高识别精度,可为提升高速公路收费稽查效率提供参考。 展开更多
关键词 公路运输 集成学习 机器学习 代价敏感 特征选择
下载PDF
木城涧煤矿东四壁缓倾斜综采工作面快速搬家工程实践 被引量:5
8
作者 张博 宁帅 《能源与环保》 2018年第12期174-178,182,共6页
为了提升已有的木城涧煤矿综采工作面搬家管理方法、技术水平,介绍了一种同时满足旧工作面回收、新工作面安装,特别是如何使旧巷内采煤机、工作面输送机、液压支架"三机"同时适应新工作面安装条件的新技术方法,而且该方法还... 为了提升已有的木城涧煤矿综采工作面搬家管理方法、技术水平,介绍了一种同时满足旧工作面回收、新工作面安装,特别是如何使旧巷内采煤机、工作面输送机、液压支架"三机"同时适应新工作面安装条件的新技术方法,而且该方法还提出了避免设备在安装过程中的损坏,充分利用设备自身特性达到自移安装,在涉及重大安装隐患治理上提出了独到的安全处理方法。这种旧巷回收设备,同时新巷安装设备一式的技术方法,至少说明了综采工作面的搬家是一项系统的工程,不仅与矿安装队的回收、安装工艺有关,而且与掘进队巷道修理准备,机电科模型试验及设备地面合理装车,还有运输段按照切巷安装工艺和时间节点要求运输设备入工作面有关。 展开更多
关键词 搬家 快速接续 试运转 采煤机 输送机 液压支架
下载PDF
Social media as passive geo-participation in transportation planning-how effective are topic modeling&sentiment analysis in comparison with citizen surveys? 被引量:5
9
作者 Oliver Lock Christopher Pettit 《Geo-Spatial Information Science》 SCIE CSCD 2020年第4期275-292,共18页
We live in an era of rapid urbanization as many cities are experiencing an unprecedented rate of population growth and congestion.Public transport is playing an increasingly important role in urban mobility with a nee... We live in an era of rapid urbanization as many cities are experiencing an unprecedented rate of population growth and congestion.Public transport is playing an increasingly important role in urban mobility with a need to move people and goods efficiently around the city.With such pressures on existing public transportation systems,this paper investigates the opportunities to use social media to more effectively engage with citizens and customers using such services.This research forms a case study of the use of passively collected forms of big data in cities-focusing on Sydney,Australia.Firstly,it examines social media data(Tweets)related to public transport performance.Secondly,it joins this to longitudinal big data-delay information continuously broadcast by the network over a year,thus forming hundreds of millions of data artifacts.Topics,tones,and sentiment are modeled using machine learning and Natural Language Processing(NLP)techniques.These resulting data,and models,are compared to opinions derived from a citizen survey among users.The validity of such data and models versus the intentions of users,in the context of systems that monitor and improve transport performance,are discussed.As such,key recommendations for developing Smart Cities were formed in an applied research context based on these data and techniques. 展开更多
关键词 Social media smart cities public participation urban sensing transport planning natural language processing machine learning big data
原文传递
Machine learning assisted prediction of charge transfer properties in organic solar cells by using morphology-related descriptors 被引量:1
10
作者 Lulu Fu Haixia Hu +6 位作者 Qiang Zhu Lifeng Zheng Yuming Gu Yaping Wen Haibo Ma Hang Yin Jing Ma 《Nano Research》 SCIE EI CSCD 2023年第2期3588-3596,共9页
Charge transfer and transport properties are crucial in the photophysical process of exciton dissociation and recombination at the donor/acceptor(D/A)interface.Herein,machine learning(ML)is applied to predict the char... Charge transfer and transport properties are crucial in the photophysical process of exciton dissociation and recombination at the donor/acceptor(D/A)interface.Herein,machine learning(ML)is applied to predict the charge transfer state energy(ECT)and identify the relationship between ECT and intermolecular packing structures sampled from molecular dynamics(MD)simulations on fullerene-and non-fullerene-based systems with different D/A ratios(RDA),oligomer sizes,and D/A pairs.The gradient boosting regression(GBR)exhibits satisfactory performance(r=0.96)in predicting ECT withπ-packing related features,aggregation extent,backbone of donor,and energy levels of frontier molecular orbitals.The charge transport property affected byπ-packing with different RDA has also been investigated by space-charge-limited current(SCLC)measurement and MD simulations.The SCLC results indicate an improved hole transport of non-fullerene system PM6/Y6 with RDA of 1.2:1 in comparison with the 1:1 counterpart,which is mainly attributed to the bridge role of donor unit in Y6.The reduced energetic disorder is correlated with the improved miscibility of polymer with RDA increased from 1:1 to 1.2:1.The morphology-related features are also applicable to other complicated systems,such as perovskite solar cells,to bridge the gap between device performance and microscopic packing structures. 展开更多
关键词 charge transfer charge transport packing modes machine learning organic solar cells
原文传递
无信号环形交叉口机非冲突机器学习预测方法 被引量:1
11
作者 任丽丽 吴江玲 +2 位作者 郭旭亮 张馨月 姜涛 《科学技术与工程》 北大核心 2023年第31期13592-13600,共9页
为高效精确地预测无信号环形交叉口机动车与非机动车的交通冲突,提出了基于遗传算法优化的BP神经网络(genetic algorithm and back propagation,GA-BP)和支持向量回归(support vector regression,SVR)的组合预测模型(SVR-GA-BP)。通过... 为高效精确地预测无信号环形交叉口机动车与非机动车的交通冲突,提出了基于遗传算法优化的BP神经网络(genetic algorithm and back propagation,GA-BP)和支持向量回归(support vector regression,SVR)的组合预测模型(SVR-GA-BP)。通过无人机采集混合交通流高清视频,利用视频识别软件Tracker提取机非交通冲突轨迹数据,以距离碰撞时间(time to collision,TTC)为判别指标,确定机非冲突严重程度。基于偏相关性分析确定交通量、平均速度、大车比例等为机非交通冲突的显著影响因素,选取均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)等五种评价指标对SVR模型、BP神经网络、SVR-GA-BP模型的预测值进行精度分析。结果表明,组合模型在一般冲突预测中精度为97.1%,相比SVR和BP神经网络分别提高6.9%和2.5%,在严重冲突预测中精度为96.1%,相比SVR和BP神经网络分别提高7.3%和5.1%。可见SVR-GA-BP组合模型能够有效预测无信号环形交叉口的机非冲突且精度最高,可为同类型交叉口的安全评价提供借鉴。 展开更多
关键词 城市交通 交通冲突预测 机器学习 无信号环形交叉口 实测轨迹数据
下载PDF
航空器爬升与下降阶段4D航迹预测 被引量:1
12
作者 赵元棣 李科频 朱文心 《科学技术与工程》 北大核心 2023年第17期7582-7588,共7页
准确的4D航迹预测可以在冲突探测与解脱、航迹优化和空中交通流量管理等多个领域发挥重要作用。为提高预测的准确性,提出了基于机器学习的航空器4D航迹预测方法。首先,利用爬升阶段提取研究指标,构建循环神经网络(recurrent neural netw... 准确的4D航迹预测可以在冲突探测与解脱、航迹优化和空中交通流量管理等多个领域发挥重要作用。为提高预测的准确性,提出了基于机器学习的航空器4D航迹预测方法。首先,利用爬升阶段提取研究指标,构建循环神经网络(recurrent neural network,RNN)和长短期记忆网络(long short-term memory,LSTM);其次,在下降阶段进行数据维度拓展,构建RNN、LSTM模型进行航迹预测;最后,对各个维度上的预测航迹点和实际航迹点的误差进行分析。仿真结果表明,爬升阶段模型和下降阶段模型对于航空器位置预测准确性高,展现了航迹预测模型的良好鲁棒性。 展开更多
关键词 航空运输 4D航迹预测 机器学习 循环神经网络 长短期记忆网络
下载PDF
User preference-based intelligent road route recommendation using SARSA and dynamic programming
13
作者 Roopa Ravish Shanta Rangaswamy +1 位作者 Arpitha V Vasuprada U 《Journal of Control and Decision》 EI 2023年第3期443-453,共11页
Traffic congestion is one of the main challenges in transportation engineering. It directly impactsthe economy by increasing travel time and affecting the environment by excessive fuel consumptionand emission. Road ro... Traffic congestion is one of the main challenges in transportation engineering. It directly impactsthe economy by increasing travel time and affecting the environment by excessive fuel consumptionand emission. Road route recommendation to overcome the congestion by alternativeroute suggestions has gained high importance. The existing route recommendation systems areproposed using the reinforcement learning algorithm (Q-learning). The techniques suggestedin this paper are state-action-reward-state-action (SARSA) algorithm and dynamic programming(DP) to guide the commuters to reach the destination with an optimal solution. The algorithmconsiders travel time, cost, flexibility, and traffic intensity as the user preference attributes torecommend an optimal route. The recommended system is implemented by building a roadnetwork graph. We assign values to each user preference attribute along the edges, which cantake high(1) or low(0) values. By considering these values, the system recommends the route.The proposed system performance is evaluated based on computation time, cumulative reward,and accuracy. The results show that DP outperforms the SARSA algorithm. 展开更多
关键词 Intelligent transport system machine learning techniques in ITS SARSA algorithm dynamic programming route guidance system travel time prediction traveller information system
原文传递
A Particle Swarm Optimization Based Deep Learning Model for Vehicle Classification 被引量:1
14
作者 Adi Alhudhaif Ammar Saeed +4 位作者 Talha Imran Muhammad Kamran Ahmed S.Alghamdi Ahmed O.Aseeri Shtwai Alsubai 《Computer Systems Science & Engineering》 SCIE EI 2022年第1期223-235,共13页
Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact s... Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact system to assist in real-world problems and applications such as security,traffic analysis,and self-driving and autonomous vehicles.The recent revolution in the field of machine learning and artificial intelligence has provided an immense amount of support for image processing related problems and has overtaken the conventional,and handcrafted means of solving image analysis problems.In this paper,a combina-tion of pre-trained CNN GoogleNet and a nature-inspired problem optimization scheme,particle swarm optimization(PSO),was employed for autonomous vehi-cle classification.The model was trained on a vehicle image dataset obtained from Kaggle that has been suitably augmented.The trained model was classified using several classifiers;however,the Cubic SVM(CSVM)classifier was found to out-perform the others in both time consumption and accuracy(94.8%).The results obtained from empirical evaluations and statistical tests reveal that the model itself has shown to outperform the other related models not only in terms of accu-racy(94.8%)but also in terms of training time(82.7 s)and speed prediction(380 obs/sec). 展开更多
关键词 Vehicle classification intelligent transport system deep learning constrained machine learning particle swarm optimization CNN GoogleNet
下载PDF
苏通GIL综合管廊工程专用运输车和安装机具的开发 被引量:2
15
作者 郝建光 马卫华 周万骏 《电力安全技术》 2020年第2期39-43,共5页
介绍了苏通GIL综合管廊工程的施工条件、安装工艺、运输轨道的要求,以及GIL运输车和安装机具的参数、组成、功能和特点,说明了安装机具的组成及主要特点,该项目的实施为国内同类项目的推广提供了经验。
关键词 苏通GIL综合管廊工程 轨道 运输车 安装机具
下载PDF
基于机器视觉与信息共享的交叉路口交通安全预警 被引量:2
16
作者 朱淑亮 于涛 李峻 《汽车安全与节能学报》 CAS CSCD 2018年第2期156-163,共8页
为提高道路交叉路口车辆及行人的通行安全性,提出了一种基于机器视觉与信息共享的全局域内的人车安全预警系统。该系统分为路侧设备和车载设备,通过路侧摄像机获取全路口实时视频图像,应用机器视觉技术解算车辆和行人的运动状态,通过计... 为提高道路交叉路口车辆及行人的通行安全性,提出了一种基于机器视觉与信息共享的全局域内的人车安全预警系统。该系统分为路侧设备和车载设备,通过路侧摄像机获取全路口实时视频图像,应用机器视觉技术解算车辆和行人的运动状态,通过计算碰撞时间预测监控目标继续通行的安全程度,路侧设备向危险车辆精准传递报警信息。预警系统向危险行驶车辆精准传递报警信息。对预警系统中的目标检测及运动分析进行了仿真和测试。试验表明:该预警方案在车辆检测、运动分析和安全预测方面在给定测试条件下具有可行性。 展开更多
关键词 道路交通 主动安全 交叉路口 驾驶辅助 人车路一体化(V2X) 机器视觉 信息共享
下载PDF
An artificial-neural-network-based surrogate modeling workflow for reactive transport modeling 被引量:1
17
作者 Yupeng Li Peng Lu Guoyin Zhang 《Petroleum Research》 2022年第1期13-20,共8页
Process-based reactive transport modeling(RTM)integrates thermodynamic and kinetically controlled fluid-rock interactions with fluid flow through porous media in the subsurface and surface environment.RTM is usually c... Process-based reactive transport modeling(RTM)integrates thermodynamic and kinetically controlled fluid-rock interactions with fluid flow through porous media in the subsurface and surface environment.RTM is usually conducted through numerical programs based on the first principle of physical processes.However,the calculation for complex chemical reactions in most available programs is an iterative process,where each iteration is in general computationally intensive.A workflow of neural networkbased surrogate model as a proxy for process-based reactive transport simulation is established in this study.The workflow includes(1)base case RTM design,(2)development of training experiments,(3)surrogate model construction based on machine learning,(4)surrogate model validation,and(5)prediction with the calibrated model.The training experiments for surrogate modeling are generated and run prior to the predictions using RTM.The results show that the predictions from the surrogate model agree well with those from processes-based RTM but with a significantly reduced computational time.The well-trained surrogate model is especially useful when a large number of realizations are required,such as the sensitivity analysis or model calibration,which can significantly reduce the computational time compared to that required by RTM.The benefits are(1)it automatizes the experimental design during the sensitivity analysis to get sufficient numbers and coverage of the training cases;(2)it parallelizes the calculations of RTM training cases during the sensitivity analysis to reduce the simulation time;(3)it uses the neural network algorithm to rank the sensitivity of the parameters and to search the optimal solution for model calibration. 展开更多
关键词 Reactive transport modeling Surrogate model machine learning DOLOMITIZATION Carbonate reservoir
原文传递
井下大巷机车多功能行车报警器的应用 被引量:1
18
作者 王晓峰 黄自强 《煤炭技术》 CAS 北大核心 2009年第6期32-33,共2页
对大巷运输事故发生机理做了简要陈述,同时对自行研制应用的专利产品大巷电机车运输多功能行车报警器,在原理和作用方面进行了简要介绍,并对其在促进该公司煤矿井下大巷行车安全管理的成效,进行了概括性的评价。
关键词 大巷 运输 多功能 行车报警器
下载PDF
PLC在自动化运输系统中的应用 被引量:1
19
作者 李洋 周庆贵 朱希荣 《连云港化工高等专科学校学报》 1998年第1期17-18,共2页
介绍了可编程控制器(PLC)和变频器在自动化运输系统中的应用情况.并对系统的主要控制功能及实现方法做了说明.
关键词 可编程控制器(PLC) 变频器 运输机
下载PDF
Perspective: Predicting and optimizing thermal transport properties with machine learning methods
20
作者 Han Wei Hua Bao Xiulin Ruan 《Energy and AI》 2022年第2期148-161,共14页
In recent years, (big) data science has emerged as the “fourth paradigm” in physical science research. Data-driven techniques, e.g. machine learning, are advantageous in dealing with problems of high-dimensional fea... In recent years, (big) data science has emerged as the “fourth paradigm” in physical science research. Data-driven techniques, e.g. machine learning, are advantageous in dealing with problems of high-dimensional features and complex mappings between quantities, which are otherwise of great difficulty or huge cost with other scientific paradigms. In the past five years or so, there has been a rapid growth of machine learning-assisted research on thermal transport. In this perspective, we review the recent progress in the intersection between machine learning and thermal transport, where machine learning methods generally serve as surrogate models for predicting the thermal transport properties, or as tools for designing structures for the desired thermal properties and exploring thermal transport mechanisms. We provide perspectives about the advantages of machine learning methods in comparison to the physics-based methods for studying thermal transport properties. We also discuss how to improve the accuracy of predictive analytics and efficiency of structural optimization, to provide guidance for better utilizing machine learning-based methods to advance thermal transport research. Finally, we identify several outstanding challenges in this active area as well as opportunities for future developments,including developing machine learning methods suitable for small datasets, discovering effective physics-based descriptors, generating dataset from experiments and validating machine learning results with experiments, and making breakthroughs via discovering new physics. 展开更多
关键词 Thermal transport properties machine learning PREDICTION OPTIMIZATION
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部