Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magni...Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays.展开更多
The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over ...The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.展开更多
Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems. Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis. T...Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems. Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis. The filtered data are then organized into longitudinal- and lateral-directional aerodynamic model data with dynamic ground effect. The dynamic ground effect requires the radio height and sink rate in the models. The model data are then refined into numerical models through a fuzzy logic algorithm without data smoothing in advance. These numerical models describe nonlinear and unsteady aerodynamics and are used in nonlinear flight dynamics simulation. For the jet transport under study, it is found that the effect of crosswind is significant enough to excite the Dutch roll motion. Through a linearized analysis in flight dynamics at every instant of time, the Dutch roll motion is found to be in nonlinear oscillation without clear damping of the amplitude. In the analysis, all stability derivatives vary with time and hence are nonlinear functions of state variables. Since the Dutch roll motion is not damped despite the fact that a full-time yaw damper is engaged, it is concluded that the design data for the yaw damper is not sufficiently realistic and the contribution of time derivative of sideslip angle to damping should be considered. As a result of nonlinear flight simulation, the vertical wind acting on the aircraft is estimated to be mostly updraft which varies along the flight path before touchdown. Varying updraft appears to make the descent rate more difficult to control to result in a higher g-load at touchdown.展开更多
We numerically investigate the effects of nonlinear time-delay on the stochastic system. With the delay time increasing, it is found that the peak of probability distribution in low steady states is decreased, and the...We numerically investigate the effects of nonlinear time-delay on the stochastic system. With the delay time increasing, it is found that the peak of probability distribution in low steady states is decreased, and the peak of probability distribution in high steady states is increased. The mean of state variable, the normalized variance, and the normalized autocorrelation function which quantifies the concentrated degree are slowly varied for small delay time. However, the mean of state variable is rapidly increased, and the normalized variance and the normalized autocorrelation function is rapidly decreased for large delay time.展开更多
基金This work was supported by SUG Research Grant M4082126.050 by the School of Mechanical and Aerospace Engineering(MAE),Nanyang Technological University(NTU),SingaporeNTU-CAAS Research Grant M4062429.052 by the ATM Research Institute,School of MAE,NTU,Singapore.
文摘Intractable delays occur in air traffic due to the imbalance between ever-increasing air traffic demand and limited airspace capacity.As air traffic is associated with complex air transport systems,delays can be magnified and propagated throughout these systems,resulting in the emergent behavior known as delay propagation.An understanding of delay propagation dynamics is pertinent to modern air traffic management.In this work,we present a complex network perspective of delay propagation dynamics.Specifically,we model air traffic scenarios using spatial–temporal networks with airports as the nodes.To establish the dynamic edges between the nodes,we develop a delay propagation method and apply it to a given set of air traffic schedules.Based on the constructed spatial-temporal networks,we suggest three metrics-magnitude,severity,and speed-to gauge delay propagation dynamics.To validate the effectiveness of the proposed method,we carry out case studies on domestic flights in the Southeastern Asia region(SAR)and the United States.Experiments demonstrate that the propagation magnitude in terms of the number of flights affected by delay propagation and the amount of propagated delays for the US traffic are respectively five and ten times those of the SAR.Experiments further reveal that the propagation speed for US traffic is eight times faster than that of the SAR.The delay propagation dynamics reveal that about six hub airports in the SAR have significant propagated delays,while the situation in the United States is considerably worse,with a corresponding number of around 16.This work provides a potent tool for tracing the evolution of air traffic delays.
基金funding from the National Natural Science Foundation of China (41130533, 41171010)
文摘The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.
基金Foundation item: National Natural Science Foundation of China (60832012)
文摘Flight data of a twin-jet transport aircraft in revenue flight are analyzed for potential safety problems. Data from the quick access recorder (QAR) are first filtered through the kinematic compatibility analysis. The filtered data are then organized into longitudinal- and lateral-directional aerodynamic model data with dynamic ground effect. The dynamic ground effect requires the radio height and sink rate in the models. The model data are then refined into numerical models through a fuzzy logic algorithm without data smoothing in advance. These numerical models describe nonlinear and unsteady aerodynamics and are used in nonlinear flight dynamics simulation. For the jet transport under study, it is found that the effect of crosswind is significant enough to excite the Dutch roll motion. Through a linearized analysis in flight dynamics at every instant of time, the Dutch roll motion is found to be in nonlinear oscillation without clear damping of the amplitude. In the analysis, all stability derivatives vary with time and hence are nonlinear functions of state variables. Since the Dutch roll motion is not damped despite the fact that a full-time yaw damper is engaged, it is concluded that the design data for the yaw damper is not sufficiently realistic and the contribution of time derivative of sideslip angle to damping should be considered. As a result of nonlinear flight simulation, the vertical wind acting on the aircraft is estimated to be mostly updraft which varies along the flight path before touchdown. Varying updraft appears to make the descent rate more difficult to control to result in a higher g-load at touchdown.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10575041 and 90303007, and the SRFDP of the Ministry of Education of China under Project No 20040511005.
文摘We numerically investigate the effects of nonlinear time-delay on the stochastic system. With the delay time increasing, it is found that the peak of probability distribution in low steady states is decreased, and the peak of probability distribution in high steady states is increased. The mean of state variable, the normalized variance, and the normalized autocorrelation function which quantifies the concentrated degree are slowly varied for small delay time. However, the mean of state variable is rapidly increased, and the normalized variance and the normalized autocorrelation function is rapidly decreased for large delay time.