In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep le...In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station.展开更多
This paper is a survey of transmit antenna selection-a low-complexity, energy-efficient method for improving physical layer security in multiple-input multiple-output wiretap channels. With this method, a single anten...This paper is a survey of transmit antenna selection-a low-complexity, energy-efficient method for improving physical layer security in multiple-input multiple-output wiretap channels. With this method, a single antenna out of multiple antennas is selected at the transmitter. We review a general analytical framework for analyzing exact and asymptotic secrecy of transmit antenna selection with receive maximal ratio combining, selection combining, or generalized selection combining. The analytical results prove that secrecy is significantly improved when the number of transmit antennas increases.展开更多
For the high end-to-end channel capacity, the amplify-and-forward scheme multiple-hop MIMO relays system is considered. The distance between each transceiver is optimized to prevent some relays from being the bottlene...For the high end-to-end channel capacity, the amplify-and-forward scheme multiple-hop MIMO relays system is considered. The distance between each transceiver is optimized to prevent some relays from being the bottleneck and guarantee the high end-to-end channel capacity. However, in some cases, the location of relays can’t be set at the desired location, the transmit power of each relay should be optimized. Additionally, in order to achieve the higher end-to-end channel capacity, the distance and the transmit power are optimized simultaneously. We propose the Markov Chain Monte Carlo method to optimize both the distance and the transmit power in complex propagation environments. Moreover, when the system has no control over transmission of each relay, the interference signal is presented and the performance of system is deteriorated. The general protocol of control transmission for each relay on the MAC layer is analyzed and compared to the Carrier Sense Multiple Access-Collision Avoidance protocol. According to the number of relays, the Mac layer protocol for the highest end-to-end channel capacity is changed. We also analyze the end-to-end channel capacity when the number of antennas and relays tends to infinity.展开更多
基金supported in part by the Aerospace Science and Technology Innovation Fund of China Aerospace Science and Technology Corporationin part by the Shanghai Aerospace Science and Technology Innovation Fund (No. SAST2018045, SAST2016034, SAST2017049)+1 种基金in part by the China Fundamental Research Fund for the Central Universities (No. 3102018QD096)in part by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (No. ZZ2019024)
文摘In order to improve the physical layer security of the device-to-device(D2D)cellular network,we propose a collaborative scheme for the transmit antenna selection and the optimal D2D pair establishment based on deep learning.Due to the mobility of users,using the current channel state information to select a transmit antenna or establish a D2D pair for the next time slot cannot ensure secure communication.Therefore,in this paper,we utilize the Echo State Network(ESN)to select the transmit antenna and the Long Short-Term Memory(LSTM)to establish the D2D pair.The simulation results show that the LSTMbased and ESN-based collaboration scheme can effectively improve the security capacity of the cellular network with D2D and increase the life of the base station.
文摘This paper is a survey of transmit antenna selection-a low-complexity, energy-efficient method for improving physical layer security in multiple-input multiple-output wiretap channels. With this method, a single antenna out of multiple antennas is selected at the transmitter. We review a general analytical framework for analyzing exact and asymptotic secrecy of transmit antenna selection with receive maximal ratio combining, selection combining, or generalized selection combining. The analytical results prove that secrecy is significantly improved when the number of transmit antennas increases.
文摘For the high end-to-end channel capacity, the amplify-and-forward scheme multiple-hop MIMO relays system is considered. The distance between each transceiver is optimized to prevent some relays from being the bottleneck and guarantee the high end-to-end channel capacity. However, in some cases, the location of relays can’t be set at the desired location, the transmit power of each relay should be optimized. Additionally, in order to achieve the higher end-to-end channel capacity, the distance and the transmit power are optimized simultaneously. We propose the Markov Chain Monte Carlo method to optimize both the distance and the transmit power in complex propagation environments. Moreover, when the system has no control over transmission of each relay, the interference signal is presented and the performance of system is deteriorated. The general protocol of control transmission for each relay on the MAC layer is analyzed and compared to the Carrier Sense Multiple Access-Collision Avoidance protocol. According to the number of relays, the Mac layer protocol for the highest end-to-end channel capacity is changed. We also analyze the end-to-end channel capacity when the number of antennas and relays tends to infinity.