During the course of their life cycles, plants undergo various morphological and physiological changes un- derlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step ...During the course of their life cycles, plants undergo various morphological and physiological changes un- derlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their inter- actions, and applications are presented.展开更多
FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in an...FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcel ular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partial y rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding.展开更多
A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration o...A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration on structural and elec-trical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time,optical emis-sion spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties,Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism,why both OES and Raman can be used to diagnose the phase transition,was analyzed theoretically.展开更多
文摘During the course of their life cycles, plants undergo various morphological and physiological changes un- derlying juvenile-to-adult and adult-to-flowering phase transitions. To flower or not to flower is a key step of plasticity of a plant toward the start of its new life cycle. In addition to the previously revealed intrinsic genetic programs, exogenous cues, and endogenous cues, a class of small non-coding RNAs, microRNAs (miRNAs), plays a key role in plants making the decision to flower by integrating into the known flowering pathways. This review highlights the age-dependent flowering pathway with a focus on a number of timing miRNAs in determining such a key process. The contributions of other miRNAs which exist mainly outside the age pathway are also discussed. Approaches to study the flowering-determining miRNAs, their inter- actions, and applications are presented.
基金supported by the National Natural Science Foundation of China (31360366)the Program for New Century Excellent Talents in University (NCET-12-1072)the Doctor Science Foundation of Xinjiang Production and Construction Corps (2012BB007)
文摘FLOWERING LOCUS T (FT) encodes a member of the phosphatidylethanolamine-binding protein (PEBP) family that functions as the mobile floral signal, playing an important role in regulating the floral transition in angiosperms. We isolated an FT-homolog (GhFT1) from Gossypium hirsutum L. cultivar, Xinluzao 33 GhFT1 was predominantly expressed in stamens and sepals, and had a relatively higher expression level during the initiation stage of fiber development. GhFT1 mRNA displayed diurnal oscillations in both long-day and short-day condition, suggesting that the expression of this gene may be under the control of the circadian clock. Subcel ular analysis revealed that GhFT1 protein located in the cytoplasm and nucleus. Ectopic expression of GhFT1 in transgenic arabidopsis plants resulted in early flowering compared with wild-type plants. In addition, ectopic expression of GhFT1 in arabidopsis ft-10 mutants partial y rescued the extremely late flowering phenotype. Finally, several flowering related genes functioning downstream of AtFT were highly upregulated in the 35S::GhFT1 transgenic arabidopsis plants. In summary, GhFT1 is an FT-homologous gene in cotton that regulates flower transition similar to its orthologs in other plant species and thus it may be a candidate target for promoting early maturation in cotton breeding.
基金Supported by the National Basic Research Program of China (Grant Nos. 2006CB202602 and 2006CB202603)
文摘A series of hydrogenated silicon thin films were prepared by the radio frequency plasma enhanced chemical vapor deposition method (RF-PECVD) with various si-lane concentrations. The influence of silane concentration on structural and elec-trical characteristics of these films was investigated to study the phase transition region from amorphous to microcrystalline phase. At the same time,optical emis-sion spectra (OES) from the plasma during the deposition process were monitored to get information about the plasma properties,Raman spectra were measured to study the structural characteristics of the deposited films. The combinatorial analysis of OES and Raman spectra results demonstrated that the OES can be used as a fast method to diagnose phase transition from amorphous to microcrystalline silicon. At last the physical mechanism,why both OES and Raman can be used to diagnose the phase transition,was analyzed theoretically.