电缆温度的暂态计算对其传输容量的合理分配及安全预警具有重要意义。然而在实际计算直埋电缆的温度时,存在电缆绝缘材料及周围土壤的热参数(密度、比热容、导热率)不易获取,或绝缘材料的热参数因老化而改变等问题,使得数值方法和传统...电缆温度的暂态计算对其传输容量的合理分配及安全预警具有重要意义。然而在实际计算直埋电缆的温度时,存在电缆绝缘材料及周围土壤的热参数(密度、比热容、导热率)不易获取,或绝缘材料的热参数因老化而改变等问题,使得数值方法和传统热路法难以实现对电缆温度的精确计算。当电缆状况和敷设环境已知时,在传统电缆热路模型的基础上,提出了一种通过信赖域算法后,再根据实测量温度来拟合改进的热路模型参数的方法,并得出电缆的缆芯和表面温度简化计算式,避免了绝缘层和敷设环境热参数难以获取的问题,减小了电缆温度的计算量。最后使用110 k V XLPE电缆开展直埋电缆的温升实验,将实测温度与计算值对比,仅存在较小的误差,证明了热路参数拟合和温度简化计算式的准确性。展开更多
Supercapacitors(SCs)have been successfully used in electric vehicles or military equipment systems for their high power density.However,the mechanical impacts from vehicle crashes and missile penetration probably caus...Supercapacitors(SCs)have been successfully used in electric vehicles or military equipment systems for their high power density.However,the mechanical impacts from vehicle crashes and missile penetration probably cause performance fluctuations or failure of SCs,which may threaten the safety of systems using SCs.In this paper,a generalized circuit model to analyze the transient process of SCs under mechanical loads is proposed.The circuit model simultaneously takes capacitance change,internal short-circuit and resistance change into account,an extra resistor-capacitor circuit(RCC)is added to simulate the nonlinear behavior during charging and discharging.Subsequently,the relationships between pressure and fundamental circuit parameters are determined by static methods.By taking the static test data into the circuit model,the transient response of different types of SCs under particular mechanical loading conditions is predicted.Finally,the influences of some crucial parameters on the voltage responses of SCs are revealed based on the simulations,which provide references for designing and optimizing mechanical load-resistant or self-sensing SCs in specific application scenarios.展开更多
基金国家自然科学基金资助项目(51577106)supported by The National Natural Science Foundation of China(No.51207081)
文摘电缆温度的暂态计算对其传输容量的合理分配及安全预警具有重要意义。然而在实际计算直埋电缆的温度时,存在电缆绝缘材料及周围土壤的热参数(密度、比热容、导热率)不易获取,或绝缘材料的热参数因老化而改变等问题,使得数值方法和传统热路法难以实现对电缆温度的精确计算。当电缆状况和敷设环境已知时,在传统电缆热路模型的基础上,提出了一种通过信赖域算法后,再根据实测量温度来拟合改进的热路模型参数的方法,并得出电缆的缆芯和表面温度简化计算式,避免了绝缘层和敷设环境热参数难以获取的问题,减小了电缆温度的计算量。最后使用110 k V XLPE电缆开展直埋电缆的温升实验,将实测温度与计算值对比,仅存在较小的误差,证明了热路参数拟合和温度简化计算式的准确性。
基金the National Natural Science Foundation of China(No.52007084)the Natural Science Foundation of Jiangsu Province under Grant(No.BK20190470).
文摘Supercapacitors(SCs)have been successfully used in electric vehicles or military equipment systems for their high power density.However,the mechanical impacts from vehicle crashes and missile penetration probably cause performance fluctuations or failure of SCs,which may threaten the safety of systems using SCs.In this paper,a generalized circuit model to analyze the transient process of SCs under mechanical loads is proposed.The circuit model simultaneously takes capacitance change,internal short-circuit and resistance change into account,an extra resistor-capacitor circuit(RCC)is added to simulate the nonlinear behavior during charging and discharging.Subsequently,the relationships between pressure and fundamental circuit parameters are determined by static methods.By taking the static test data into the circuit model,the transient response of different types of SCs under particular mechanical loading conditions is predicted.Finally,the influences of some crucial parameters on the voltage responses of SCs are revealed based on the simulations,which provide references for designing and optimizing mechanical load-resistant or self-sensing SCs in specific application scenarios.