Based on the previous work on the transport-transformation of heavy metal pollutants in fluvial rivers, this paper presented the formulation of a two-dimensional model to describe heavy metal transport-transformation ...Based on the previous work on the transport-transformation of heavy metal pollutants in fluvial rivers, this paper presented the formulation of a two-dimensional model to describe heavy metal transport-transformation in fluvial rivers by considering basic principles of environmental chemistry, hydraulics, mechanics of sediment transport and recent developments along with three very simplified test cases. The model consists of water flow governing equations, sediment transport governing equations, transport-transformation equation of heavy metal pollutants, and convection-diffusion equations of adsorption-desorption kinetics of particulate heavy metal concentrations on suspended load, bed load and bed sediment. The heavy metal transport-transformation equation is basically a mass balance equation, which demonstrates how sediment transport affects transport-transformation of heavy metals in fluvial rivers. The convection-diffusion equations of adsorption-desorption kinetics of heavy metals, being an extension of batch reactor experimental results and a major advancement of the previous work, take both physical transport, i.e. convection and diffusion and chemical reactions, i.e. adsorption-desorption into account. Effects of sediment transport on heavy metal transport-transformation were clarified through three examples. Specifically, the transport-transformation of heavy metals in a steady, uniform and equilibrium sediment-laden flow was calculated by applying this model, and results were shown to be rational. Both theoretical analysis and numerical simulation indicated that the transport-transformation of heavy metals in sediment-laden flows with clay-enriched riverbed possesses not only the generality of common tracer pollutants, but also characteristics of transport-transformation induced by sediment motion. Future work will be conducted to present validation/application of the model with available data.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
The concept of polaron, emerged from condense matter physics, describes the dynamical interac- tion of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat ...The concept of polaron, emerged from condense matter physics, describes the dynamical interac- tion of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynam- ics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.展开更多
TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system w...TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations(MT) is still lacking.In this work,we focused on the electronic transport behavior of three phases in Ni_(50-x)Fe_xTi_(50)across the MT.A phase diagram of Ni_(50-x)Fe_xTi_(50) was established based on x-ray diffraction,calorimetric,magnetic,and electrical measurements.To reveal the driving force of MT,phonon softening was revealed using first-principles calculations.Notably,the transverse and longitudinal transport behavior changed significantly across the phase transition,which can be attributed to the reconstruction of electronic structures.This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.展开更多
基金supported by the Natural Science Foundation of Tianjin (Grant No. 09ZCGYSF00400)the National Key-Projects of Water Pollu-tion Control and Prevention (Grant No. 2009ZX07209-001)+1 种基金the Com-monweal Projects Specific for Scientific Research of the Ministry of Water Conservancy of China (Grant No. 200801135)the National Natural Science Foundation of China (Grant No. 50479034)
文摘Based on the previous work on the transport-transformation of heavy metal pollutants in fluvial rivers, this paper presented the formulation of a two-dimensional model to describe heavy metal transport-transformation in fluvial rivers by considering basic principles of environmental chemistry, hydraulics, mechanics of sediment transport and recent developments along with three very simplified test cases. The model consists of water flow governing equations, sediment transport governing equations, transport-transformation equation of heavy metal pollutants, and convection-diffusion equations of adsorption-desorption kinetics of particulate heavy metal concentrations on suspended load, bed load and bed sediment. The heavy metal transport-transformation equation is basically a mass balance equation, which demonstrates how sediment transport affects transport-transformation of heavy metals in fluvial rivers. The convection-diffusion equations of adsorption-desorption kinetics of heavy metals, being an extension of batch reactor experimental results and a major advancement of the previous work, take both physical transport, i.e. convection and diffusion and chemical reactions, i.e. adsorption-desorption into account. Effects of sediment transport on heavy metal transport-transformation were clarified through three examples. Specifically, the transport-transformation of heavy metals in a steady, uniform and equilibrium sediment-laden flow was calculated by applying this model, and results were shown to be rational. Both theoretical analysis and numerical simulation indicated that the transport-transformation of heavy metals in sediment-laden flows with clay-enriched riverbed possesses not only the generality of common tracer pollutants, but also characteristics of transport-transformation induced by sediment motion. Future work will be conducted to present validation/application of the model with available data.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
文摘The concept of polaron, emerged from condense matter physics, describes the dynamical interac- tion of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynam- ics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.
基金supported by the State Key Development Program for Basic Research of China(Grant Nos.2019YFA0704900 and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the Synergetic Extreme Condition User Facility(SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003)。
文摘TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations(MT) is still lacking.In this work,we focused on the electronic transport behavior of three phases in Ni_(50-x)Fe_xTi_(50)across the MT.A phase diagram of Ni_(50-x)Fe_xTi_(50) was established based on x-ray diffraction,calorimetric,magnetic,and electrical measurements.To reveal the driving force of MT,phonon softening was revealed using first-principles calculations.Notably,the transverse and longitudinal transport behavior changed significantly across the phase transition,which can be attributed to the reconstruction of electronic structures.This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.
基金supported by National Natural Science Foundation of China(Nos.51071084,21273113,21121091 and 11204120)National Key Technology R&D Program of China(No.2012BAF03B05)