Rare earth doped upconversion nanoparticles can be considered as the spice of research in the field of luminescence nanomaterials due to their unique optical properties such as near-infrared excitation.Enormous works ...Rare earth doped upconversion nanoparticles can be considered as the spice of research in the field of luminescence nanomaterials due to their unique optical properties such as near-infrared excitation.Enormous works have been reported about biomedical applications of 980 nm excited and Yb^3+-sensitized upconversion nanoparticles.However,980 nm excitation wavelength overlaps with the absorption band of water molecules in the biological environment,leading to overheating effect that can induce thermal damages of normal cells and tissues.Recently,Nd^3+-sensitized upconversion nanoparticles which can be excited with 808 nm has been widely investigated as alternative nanoparticles that can surmount this issue of overheating effect.Even though Nd^3+-sensitized upconversion nanoparticles can reduce the overheating effect by 20 fold as compared to Yb^3+-sensitized counterpart,there are several factors that reduce the upconversion luminescence intensity.In this review article,photon energy harvesting and transferring mechanisms in Nd^3+,Yb^3+and emitter ions co-doped upconversion nanoparticles under 808 nm excitation are briefly discussed.Factors that affect upconversion luminescence intensity and quantum yield of Nd^3+-sensitized upconversion nanoparticles are also addressed.Besides,some of the important strategies that have been recently utilized to boost upconversion luminescence intensity of Nd^3+sensitized upco nversion nanoparticles are tho roughly summarized.Lastly,the future challenges in the area and our perspectives are in sight.展开更多
The quenching interaction of atomoxetine(ATX) with bovine serum albumin(BSA) was studied in vitro under optimal physiological condition(pH=7.4) by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a ...The quenching interaction of atomoxetine(ATX) with bovine serum albumin(BSA) was studied in vitro under optimal physiological condition(pH=7.4) by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a dynamic quenching process and was confirmed by the fluorescence spectra and lifetime measurements. The number of binding sites, binding constants and other binding characteristics were computed. Thermodynamic parameters ΔH^0 and ΔS^0 indicated that intermolecular hydrophobic forces predominantly stabilized the drug-protein system. The average binding distance between BSA and ATX was studied by F?rsters theory. UV-absorption, Fourier transform infrared spectroscopy(FT-IR), circular dichroism(CD), synchronous spectra and three-dimensional(3D) fluorescence spectral results revealed the changes in micro-environment of secondary structure of protein upon the interaction with ATX. Displacement of site probes and the effects of some common metal ions on the binding of ATX with BSA interaction were also studied.展开更多
基金Projects supported by the National Natural Science Foundation of China(21571125,51872183,51672171)National Key R&D Program of China(2016YFE0114800)
文摘Rare earth doped upconversion nanoparticles can be considered as the spice of research in the field of luminescence nanomaterials due to their unique optical properties such as near-infrared excitation.Enormous works have been reported about biomedical applications of 980 nm excited and Yb^3+-sensitized upconversion nanoparticles.However,980 nm excitation wavelength overlaps with the absorption band of water molecules in the biological environment,leading to overheating effect that can induce thermal damages of normal cells and tissues.Recently,Nd^3+-sensitized upconversion nanoparticles which can be excited with 808 nm has been widely investigated as alternative nanoparticles that can surmount this issue of overheating effect.Even though Nd^3+-sensitized upconversion nanoparticles can reduce the overheating effect by 20 fold as compared to Yb^3+-sensitized counterpart,there are several factors that reduce the upconversion luminescence intensity.In this review article,photon energy harvesting and transferring mechanisms in Nd^3+,Yb^3+and emitter ions co-doped upconversion nanoparticles under 808 nm excitation are briefly discussed.Factors that affect upconversion luminescence intensity and quantum yield of Nd^3+-sensitized upconversion nanoparticles are also addressed.Besides,some of the important strategies that have been recently utilized to boost upconversion luminescence intensity of Nd^3+sensitized upco nversion nanoparticles are tho roughly summarized.Lastly,the future challenges in the area and our perspectives are in sight.
基金Karnatak University, Dharwad, India, for providing UGC-UPE fellowshipUGC, New Delhi for the award of BSR Faculty Fellowship (F No.18-1/2011) to Prof. S.T. Nandibewoor
文摘The quenching interaction of atomoxetine(ATX) with bovine serum albumin(BSA) was studied in vitro under optimal physiological condition(pH=7.4) by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a dynamic quenching process and was confirmed by the fluorescence spectra and lifetime measurements. The number of binding sites, binding constants and other binding characteristics were computed. Thermodynamic parameters ΔH^0 and ΔS^0 indicated that intermolecular hydrophobic forces predominantly stabilized the drug-protein system. The average binding distance between BSA and ATX was studied by F?rsters theory. UV-absorption, Fourier transform infrared spectroscopy(FT-IR), circular dichroism(CD), synchronous spectra and three-dimensional(3D) fluorescence spectral results revealed the changes in micro-environment of secondary structure of protein upon the interaction with ATX. Displacement of site probes and the effects of some common metal ions on the binding of ATX with BSA interaction were also studied.