Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that trans...Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.展开更多
Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy ...Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed.展开更多
A novel two-phase approach towards the corrosion of PtNil0 nanoctahedra has been developed. In this strategy, the active component of Ni in oil-soluble PtNil0 nanoctahedra which resided in the upper toluene phase, suf...A novel two-phase approach towards the corrosion of PtNil0 nanoctahedra has been developed. In this strategy, the active component of Ni in oil-soluble PtNil0 nanoctahedra which resided in the upper toluene phase, suffered from etching and was then transferred into a lower aqueous phase with coordination by ethylenediaminetetraacetate (EDTA). Due to the existence of the phase-transfer interface promoted by EDTA, the corrosion reaction proceeded at an accelerated rate under the mild conditions. Specifically, the resultant products of octahedral Pt4Ni nanoframes were successfully fabricated for the first time, and PtNi4 porous octahedra could be obtained when the dosage of EDTA-2Na was reduced. After a systematic study of this two-phase system, a "synergetic corrosion" mechanism is proposed to account for the formation of octahedral Pt4Ni nanoframes, involving contributions from many species (i.e., O2, H2O, H+, OAm, and EDTA^4-). As a result of the fascinating three-dimensional geometry of Pt4Ni nanoframes and PtNi4 porous octahedra, both of the corroded nanocrystals showed superior activity over the pristine PtNi^o nanoctahedra for ethanol electrooxidation in alkaline media and hydrogenation of nitrobenzene.展开更多
Vacuum die casting can reduce the'air entrapment'phenomenon during casting process.Based on the temperature measurements at metal-die interface with different processing parameters,such as slow shot speed(VL),...Vacuum die casting can reduce the'air entrapment'phenomenon during casting process.Based on the temperature measurements at metal-die interface with different processing parameters,such as slow shot speed(VL),high shot speed(VH),pouring temperature(Tp)and initial die temperature(Tm),inverse method was developed to determine the interfacial heat transfer coefficient(IHTC).The results indicate that a closer contact between the casting and die could be achieved when the vacuum system is used.It is found that the vacuum could strongly increase the values of IHTC and decrease the grain size in castings.The IHTC could have a higher peak value with increasing the Tp from680to720℃or the VL from0.1to0.4m/s.In addition,the influence of the VH and Tm on IHTC could be negligible.展开更多
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P...The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design.展开更多
基金Ministry of Higher Education,Malaysia,Grant/Award Number:FRGS/1/2020/TK0/XMU/02/1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515111019+1 种基金Hengyuan International Sdn.Bhd.,Grant/Award Number:EENG/0003Xiamen University Malaysia,Grant/Award Numbers:IENG/0038,ICOE/0001,XMUMRF/2019-C3/IENG/0013,XMUMRF/2021-C8/IENG/0041。
文摘Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs.
基金funded by the National Natural Science Foundation of China (NNSFC grant nos. 52103034, 51873126, 52175331 and 52003170)Shandong Provincial Natural Science Foundation (ZR2021QE014, ZR2020ZD04)
文摘Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree,operation frequency and power density,and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials.Compared to the conventional thermal management materials,flexible thermally conductive films with high in-plane thermal conductivity,as emerging candidates,have aroused greater interest in the last decade,which show great potential in thermal management applications of next-generation devices.However,a comprehensive review of flexible thermally conductive films is rarely reported.Thus,we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity,with deep understandings of heat transfer mechanism,processing methods to enhance thermal conductivity,optimization strategies to reduce interface thermal resistance and their potential applications.Lastly,challenges and opportunities for the future development of flexible thermally conductive films are also discussed.
文摘A novel two-phase approach towards the corrosion of PtNil0 nanoctahedra has been developed. In this strategy, the active component of Ni in oil-soluble PtNil0 nanoctahedra which resided in the upper toluene phase, suffered from etching and was then transferred into a lower aqueous phase with coordination by ethylenediaminetetraacetate (EDTA). Due to the existence of the phase-transfer interface promoted by EDTA, the corrosion reaction proceeded at an accelerated rate under the mild conditions. Specifically, the resultant products of octahedral Pt4Ni nanoframes were successfully fabricated for the first time, and PtNi4 porous octahedra could be obtained when the dosage of EDTA-2Na was reduced. After a systematic study of this two-phase system, a "synergetic corrosion" mechanism is proposed to account for the formation of octahedral Pt4Ni nanoframes, involving contributions from many species (i.e., O2, H2O, H+, OAm, and EDTA^4-). As a result of the fascinating three-dimensional geometry of Pt4Ni nanoframes and PtNi4 porous octahedra, both of the corroded nanocrystals showed superior activity over the pristine PtNi^o nanoctahedra for ethanol electrooxidation in alkaline media and hydrogenation of nitrobenzene.
基金Project (2016YFB0301001) supported by the National Key Research and Development Program of ChinaProject (2015M580093) supported by the General Financial Grant from the China Postdoctoral Science Foundation of China
文摘Vacuum die casting can reduce the'air entrapment'phenomenon during casting process.Based on the temperature measurements at metal-die interface with different processing parameters,such as slow shot speed(VL),high shot speed(VH),pouring temperature(Tp)and initial die temperature(Tm),inverse method was developed to determine the interfacial heat transfer coefficient(IHTC).The results indicate that a closer contact between the casting and die could be achieved when the vacuum system is used.It is found that the vacuum could strongly increase the values of IHTC and decrease the grain size in castings.The IHTC could have a higher peak value with increasing the Tp from680to720℃or the VL from0.1to0.4m/s.In addition,the influence of the VH and Tm on IHTC could be negligible.
基金supported by the National Key R&D Program of China(2020YFA0406104,2020YFA0406101)the National MCF Energy R&D Program of China(2018YFE0306105)+5 种基金the Innovative Research Group Project of the National Natural Science Foundation of China(51821002)the National Natural Science Foundation of China(51725204,21771132,51972216,52041202)the Natural Science Foundation of Jiangsu Province(BK20190041)the Key-Area Research and Development Program of Guang Dong Province(2019B010933001)the Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 Project。
文摘The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design.