Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing p...Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing point are determined by positioning analysis. It is shown that the landing epoch (the emission epoch of the last signal) of CE-1 satellite on the Moon was at UTC8h13m6.51s. The lunar longitude, latitude and surface height of the landing point in the lunar primary axes frame are respectively 52.2732°, 1.6440° and –3.56 km (the reference lunar radius is 1738 km). The uncertainties are 0.0040°, 0.0168° and 0.18 km. The corresponding uncertainty in the tangential direction of the lunar surface is 0.52 km and the three-dimensional (3D) positioning uncertainty is 0.55 km. It is accordingly deduced that even with the present technical specifications of the radio ranges and VLBI delays, the 1 km 3D positioning precision could be guaranteed for the lander in the second stage of China’s Lunar Explora- tion Project. Concerning the trace determination of the rover on the lunar surface, because only telemetry signal will be emitted, VLBI would be the sole tracking technique from the Earth. The application of the constraint of geocentric distance is shown to be helpful to improving the positioning precision. It is worthy to pay close attention to the applications of the same beam VLBI technique, the lunar topographic model and the on-board observations of the lander and rover to the position/trace determination of the rover.展开更多
The use of computer vision technology to collect and analyze statistics during badminton matches or training sessions can be expected to provide valuable information to help coaches to determine which tactics should b...The use of computer vision technology to collect and analyze statistics during badminton matches or training sessions can be expected to provide valuable information to help coaches to determine which tactics should be used by a player in a given game or to improve the player's tactical training. A method based on 2-D seriate images by which statistical data of a badminton match can be obtained is presented. Image capture and analysis were performed synchronously using a multithreading technique. The regions of movement in the images were detected using a temporal difference method, and the trajectories of the movement regions were analyzed using sedate images. The shuttlecock trajectory was extracted from all detected trajectories using various characteristic parameters. The stroke type was determined by comparing the shuttlecock trajectory data with a set of stroke definition data. The algorithm was tested at a training center, and the results were compared with baseline data obtained by expert visual inspection using four video samples, which included approximately 10 000 frames. The shuttlecock trajectory and stroke type were detected correctly in almost 100% of the analyzed video sequences. The average speed of the automated analysis was approximately 40 frames/s, indicating that the method can be used for real-time analysis during a badminton match. The system is convenient for use by a sports coach.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10778635 and 10973030)China’s Lunar Exploration Project (CE-1)+1 种基金National High-Tech Research and Development Program of China (Grant Nos. 2008AA12A209 and 2008AA12A210)STC of Shanghai Munici-pality (Grant No. 06DZ22101)
文摘Based on the tracking observations of radio ranges and VLBI delays of Chang’E-1 (CE-1) satellite during the controlled landing on the Moon on March 1, 2009, the landing trajectory and the coordinates of the landing point are determined by positioning analysis. It is shown that the landing epoch (the emission epoch of the last signal) of CE-1 satellite on the Moon was at UTC8h13m6.51s. The lunar longitude, latitude and surface height of the landing point in the lunar primary axes frame are respectively 52.2732°, 1.6440° and –3.56 km (the reference lunar radius is 1738 km). The uncertainties are 0.0040°, 0.0168° and 0.18 km. The corresponding uncertainty in the tangential direction of the lunar surface is 0.52 km and the three-dimensional (3D) positioning uncertainty is 0.55 km. It is accordingly deduced that even with the present technical specifications of the radio ranges and VLBI delays, the 1 km 3D positioning precision could be guaranteed for the lander in the second stage of China’s Lunar Explora- tion Project. Concerning the trace determination of the rover on the lunar surface, because only telemetry signal will be emitted, VLBI would be the sole tracking technique from the Earth. The application of the constraint of geocentric distance is shown to be helpful to improving the positioning precision. It is worthy to pay close attention to the applications of the same beam VLBI technique, the lunar topographic model and the on-board observations of the lander and rover to the position/trace determination of the rover.
文摘The use of computer vision technology to collect and analyze statistics during badminton matches or training sessions can be expected to provide valuable information to help coaches to determine which tactics should be used by a player in a given game or to improve the player's tactical training. A method based on 2-D seriate images by which statistical data of a badminton match can be obtained is presented. Image capture and analysis were performed synchronously using a multithreading technique. The regions of movement in the images were detected using a temporal difference method, and the trajectories of the movement regions were analyzed using sedate images. The shuttlecock trajectory was extracted from all detected trajectories using various characteristic parameters. The stroke type was determined by comparing the shuttlecock trajectory data with a set of stroke definition data. The algorithm was tested at a training center, and the results were compared with baseline data obtained by expert visual inspection using four video samples, which included approximately 10 000 frames. The shuttlecock trajectory and stroke type were detected correctly in almost 100% of the analyzed video sequences. The average speed of the automated analysis was approximately 40 frames/s, indicating that the method can be used for real-time analysis during a badminton match. The system is convenient for use by a sports coach.