High-speed railway aerodynamics is the key basic science for solving the bottleneck problem of high-speed railway development.This paper systematically summarizes the aerodynamic research relating to China’s high-spe...High-speed railway aerodynamics is the key basic science for solving the bottleneck problem of high-speed railway development.This paper systematically summarizes the aerodynamic research relating to China’s high-speed railway network.Seven key research advances are comprehensively discussed,including train aerodynamic drag-reduction technology,train aerodynamic noise-reduction technology,train ventilation technology,train crossing aerodynamics,train/tunnel aerodynamics,train/climate environment aerodynamics,and train/human body aerodynamics.Seven types of railway aerodynamic test platform built by Central South University are introduced.Five major systems for a high-speed railway network—the aerodynamics theoretical system,the aerodynamic shape(train,tunnel,and so on)design system,the aerodynamics evaluation system,the 3D protection system for operational safety of the high-speed railway network,and the high-speed railway aerodynamic test/computation/analysis platform system—are also introduced.Finally,eight future development directions for the field of railway aerodynamics are proposed.For over 30 years,railway aerodynamics has been an important supporting element in the development of China’s high-speed railway network,which has also promoted the development of high-speed railway aerodynamics throughout the world.展开更多
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-H...Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.展开更多
文摘High-speed railway aerodynamics is the key basic science for solving the bottleneck problem of high-speed railway development.This paper systematically summarizes the aerodynamic research relating to China’s high-speed railway network.Seven key research advances are comprehensively discussed,including train aerodynamic drag-reduction technology,train aerodynamic noise-reduction technology,train ventilation technology,train crossing aerodynamics,train/tunnel aerodynamics,train/climate environment aerodynamics,and train/human body aerodynamics.Seven types of railway aerodynamic test platform built by Central South University are introduced.Five major systems for a high-speed railway network—the aerodynamics theoretical system,the aerodynamic shape(train,tunnel,and so on)design system,the aerodynamics evaluation system,the 3D protection system for operational safety of the high-speed railway network,and the high-speed railway aerodynamic test/computation/analysis platform system—are also introduced.Finally,eight future development directions for the field of railway aerodynamics are proposed.For over 30 years,railway aerodynamics has been an important supporting element in the development of China’s high-speed railway network,which has also promoted the development of high-speed railway aerodynamics throughout the world.
基金supported by the National Key Technology R&D Program (2009BAG12A03)Innovation Project of Chinese Academy of Sciences of China (KJCX2-EW-L02-1)
文摘Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.