针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了...针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了一种结合注意力机制和编-解码器结构的交织区车辆强制性变道轨迹预测方法,利用Next Generation Simulation(NGSIM)数据集提取车辆变道过程中的关键特征,并引入碰撞时间(Time to Collision,TTC)和避免碰撞减速度(Deceleration Rate to Avoid a Crash,DRAC)2种风险指标,将变道车辆及其周围车辆视为一个整体状态单元,同时补全状态单元内部不同车辆在横向和纵向上的时空状态特征,从而更有效地刻画车辆间的动态交互行为;然后将不同观测车辆的连续窗口序列输入基于长短期记忆网络(Long Short-term Memory,LSTM)的编-解码器,预测交织区车辆变道的未来运动轨迹,通过添加软注意力模块,使模型能够集中聚焦于影响车辆在不同时刻下位置变化的关键信息,再现了真实交通场景下车辆的变道行为。试验验证表明:基于注意力机制的编-解码器模型与当前流行的卷积长短期记忆网络、极限梯度提升树等模型相比具有更高的轨迹预测精度,在长时域的变道轨迹拟合上有显著的优越性,为辅助和自动驾驶领域的发展提供了新思路。展开更多
重载货车驾驶人的激进驾驶风格具有强烈的习惯性特征和风险性特征,一旦养成很难矫正,且极易诱发交通事故。针对现有研究极少关注重载货车驾驶人驾驶风格的不足,本文基于某全国货运监管平台提供的云南省重载货车低频轨迹数据,从风格聚类...重载货车驾驶人的激进驾驶风格具有强烈的习惯性特征和风险性特征,一旦养成很难矫正,且极易诱发交通事故。针对现有研究极少关注重载货车驾驶人驾驶风格的不足,本文基于某全国货运监管平台提供的云南省重载货车低频轨迹数据,从风格聚类、风格识别和风格评估这3个方面,提出综合考虑疲劳驾驶特征和超速驾驶特征的重载货车驾驶人驾驶风格分析方法。首先,基于轨迹数据蕴含驾驶人驾驶行为模式的特点,构建表征重载货车驾驶人驾驶风格的疲劳驾驶和超速驾驶特征集;其次,利用因子分析进行特征约简,并采用K-均值聚类方法划分重载货车驾驶人的驾驶风格;然后,构建基于支持向量机的驾驶风格识别模型,并与梯度提升决策树的识别结果进行对比;最后,基于疲劳驾驶特征和超速驾驶特征的累积分布,建立基于CRITIC(Criteria Importance Though Intercriteria Correlation)赋权法的重载货车驾驶人驾驶风格量化评估模型。研究结果表明:经过特征约简,提取的疲劳因子和超速因子能综合反映上述两类特征集80.838%的信息;根据疲劳因子和超速因子可将驾驶风格划分为4种类别,即稳健型、超速型、疲劳型和危险型,相应重载货车驾驶人比例依次为62.60%、25.02%、7.40%和4.98%;基于支持向量机的重载货车驾驶人驾驶风格识别模型对不同风格的识别准确率均大于97%,整体表现优于梯度提升决策树;基于CRITIC赋权法的驾驶风格评估模型能有效量化重载货车驾驶人的驾驶风格,其中稳健型驾驶人表现最好,75%以上的驾驶人风格评估总分高于60分;危险型驾驶人表现最差,75%以上的驾驶人风格评估总分低于20分。研究结果可为重载货车驾驶人不良驾驶行为的监测、干预和管理提供理论依据和技术支撑。展开更多
文摘针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了一种结合注意力机制和编-解码器结构的交织区车辆强制性变道轨迹预测方法,利用Next Generation Simulation(NGSIM)数据集提取车辆变道过程中的关键特征,并引入碰撞时间(Time to Collision,TTC)和避免碰撞减速度(Deceleration Rate to Avoid a Crash,DRAC)2种风险指标,将变道车辆及其周围车辆视为一个整体状态单元,同时补全状态单元内部不同车辆在横向和纵向上的时空状态特征,从而更有效地刻画车辆间的动态交互行为;然后将不同观测车辆的连续窗口序列输入基于长短期记忆网络(Long Short-term Memory,LSTM)的编-解码器,预测交织区车辆变道的未来运动轨迹,通过添加软注意力模块,使模型能够集中聚焦于影响车辆在不同时刻下位置变化的关键信息,再现了真实交通场景下车辆的变道行为。试验验证表明:基于注意力机制的编-解码器模型与当前流行的卷积长短期记忆网络、极限梯度提升树等模型相比具有更高的轨迹预测精度,在长时域的变道轨迹拟合上有显著的优越性,为辅助和自动驾驶领域的发展提供了新思路。
文摘重载货车驾驶人的激进驾驶风格具有强烈的习惯性特征和风险性特征,一旦养成很难矫正,且极易诱发交通事故。针对现有研究极少关注重载货车驾驶人驾驶风格的不足,本文基于某全国货运监管平台提供的云南省重载货车低频轨迹数据,从风格聚类、风格识别和风格评估这3个方面,提出综合考虑疲劳驾驶特征和超速驾驶特征的重载货车驾驶人驾驶风格分析方法。首先,基于轨迹数据蕴含驾驶人驾驶行为模式的特点,构建表征重载货车驾驶人驾驶风格的疲劳驾驶和超速驾驶特征集;其次,利用因子分析进行特征约简,并采用K-均值聚类方法划分重载货车驾驶人的驾驶风格;然后,构建基于支持向量机的驾驶风格识别模型,并与梯度提升决策树的识别结果进行对比;最后,基于疲劳驾驶特征和超速驾驶特征的累积分布,建立基于CRITIC(Criteria Importance Though Intercriteria Correlation)赋权法的重载货车驾驶人驾驶风格量化评估模型。研究结果表明:经过特征约简,提取的疲劳因子和超速因子能综合反映上述两类特征集80.838%的信息;根据疲劳因子和超速因子可将驾驶风格划分为4种类别,即稳健型、超速型、疲劳型和危险型,相应重载货车驾驶人比例依次为62.60%、25.02%、7.40%和4.98%;基于支持向量机的重载货车驾驶人驾驶风格识别模型对不同风格的识别准确率均大于97%,整体表现优于梯度提升决策树;基于CRITIC赋权法的驾驶风格评估模型能有效量化重载货车驾驶人的驾驶风格,其中稳健型驾驶人表现最好,75%以上的驾驶人风格评估总分高于60分;危险型驾驶人表现最差,75%以上的驾驶人风格评估总分低于20分。研究结果可为重载货车驾驶人不良驾驶行为的监测、干预和管理提供理论依据和技术支撑。