In this paper, we incorporate new parameters into a cellular automaton traffic flow model proposed in our previous paper [Jin et al. 2010 J. Stat. Mech. 2010 P03018]. Through these parameters, we adjust the anticipate...In this paper, we incorporate new parameters into a cellular automaton traffic flow model proposed in our previous paper [Jin et al. 2010 J. Stat. Mech. 2010 P03018]. Through these parameters, we adjust the anticipated velocity and the acceleration threshold separately. It turns out that the flow rate of synchronized flow mainly changes with the anticipated velocity, and the F →S phase transition feature mainly changes with the acceleration threshold. Therefore, we conclude that the acceleration threshold is the major factor affecting the F → S phase transition.展开更多
This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the...This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the randomization of the latter one. In numerical simulations, this model shows the following characteristics. (1) With a simple structure, this model succeeds in reproducing the hysteresis effect, which is absent in the NS model. (2) Compared with the slow-tostart models, this model exhibits a local fundamental diagram which is more consistent to empirical observations. (3) This model has much higher efficiency in dissolving congestions compared with the so-called NS model with velocitydependent randomization (VDR model). (4) This model is more robust when facing traffic obstructions. It can resist much longer shock times and has much shorter relaxation times on the other hand. To summarize, compared with the existing models, this model is quite simple in structure, but has good characteristics.展开更多
A cellular automaton (CA) model is proposed in this paper to analyze a bridge traffic bottleneck. The simulation results with this model show that there are several phase transitions in the traffic average density, ...A cellular automaton (CA) model is proposed in this paper to analyze a bridge traffic bottleneck. The simulation results with this model show that there are several phase transitions in the traffic average density, velocity and flow for each lane under a periodic boundary condition. An unstable phase in the traffic average density and velocity for the upstream and downstream lanes of the bridge is shown in a range of initial traffic densities. The critical points of the phase transitions and the phenomenon of the unstable phase found in the simulation are also explained with the mean-field theory.展开更多
This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping rela...This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10872194 and 50738001)
文摘In this paper, we incorporate new parameters into a cellular automaton traffic flow model proposed in our previous paper [Jin et al. 2010 J. Stat. Mech. 2010 P03018]. Through these parameters, we adjust the anticipated velocity and the acceleration threshold separately. It turns out that the flow rate of synchronized flow mainly changes with the anticipated velocity, and the F →S phase transition feature mainly changes with the acceleration threshold. Therefore, we conclude that the acceleration threshold is the major factor affecting the F → S phase transition.
基金supported by the National Basic Research Program of China (973 Program No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 10635040, 10532060, 10472116 and 70271070)+2 种基金the Special Research Funds for Theoretical Physics Frontier Problems (NSFC Nos 10547004 and A0524701)the President Funding of Chinese Academy of Sciencethe Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘This paper presents a cellular automaton model for single-lane traffic flow. On the basis of the Nagel-Schreckenberg (NS) model, it further considers the effect of headway-distance between two successive cars on the randomization of the latter one. In numerical simulations, this model shows the following characteristics. (1) With a simple structure, this model succeeds in reproducing the hysteresis effect, which is absent in the NS model. (2) Compared with the slow-tostart models, this model exhibits a local fundamental diagram which is more consistent to empirical observations. (3) This model has much higher efficiency in dissolving congestions compared with the so-called NS model with velocitydependent randomization (VDR model). (4) This model is more robust when facing traffic obstructions. It can resist much longer shock times and has much shorter relaxation times on the other hand. To summarize, compared with the existing models, this model is quite simple in structure, but has good characteristics.
基金The project supported by the National Natural Science Foundation of China(70371067 and 10347001)the Key Project of Chinese Ministry of Education(02115)and the New Century Talent Plan of Guangxi Province in China(2001204).
文摘A cellular automaton (CA) model is proposed in this paper to analyze a bridge traffic bottleneck. The simulation results with this model show that there are several phase transitions in the traffic average density, velocity and flow for each lane under a periodic boundary condition. An unstable phase in the traffic average density and velocity for the upstream and downstream lanes of the bridge is shown in a range of initial traffic densities. The critical points of the phase transitions and the phenomenon of the unstable phase found in the simulation are also explained with the mean-field theory.
基金supported by the National Basic Research Program of China (973) (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant No 70671008)
文摘This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.