VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c...VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.展开更多
Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detecti...Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. In this article, an approach is presented for online traffic classification relying on the observation of the first n packets of a transmission control protocol (TCP) connection. Its key idea is to utilize the properties of the observed first ten packets of a TCP connection and Bayesian network method to build a classifier. This classifier can classify TCP flows dynamically as packets pass through it by deciding whether a TCP flow belongs to a given application. The experimental results show that the proposed approach performs well in online Internet traffic classification and that it is superior to naive Bayesian method.展开更多
Network traffic classification aims at identifying the application types of network packets. It is important for Internet service providers (ISPs) to manage bandwidth resources and ensure the quality of service for ...Network traffic classification aims at identifying the application types of network packets. It is important for Internet service providers (ISPs) to manage bandwidth resources and ensure the quality of service for different network applications However, most classification techniques using machine learning only focus on high flow accuracy and ignore byte accuracy. The classifier would obtain low classification performance for elephant flows as the imbalance between elephant flows and mice flows on Internet. The elephant flows, however, consume much more bandwidth than mice flows. When the classifier is deployed for traffic policing, the network management system cannot penalize elephant flows and avoid network congestion effectively. This article explores the factors related to low byte accuracy, and secondly, it presents a new traffic classification method to improve byte accuracy at the aid of data cleaning. Experiments are carried out on three groups of real-world traffic datasets, and the method is compared with existing work on the performance of improving byte accuracy. Experiment shows that byte accuracy increased by about 22.31% on average. The method outperforms the existing one in most cases.展开更多
The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper...The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper.By analyzing traffic statistical features and network behavior of P2P streaming,a group of flow characteristics were found,which can make P2P streaming more recognizable among other applications.Attributes from Netflow and those proposed by us are compared in terms of classification accuracy,and so are the results of different sampling rates.It is proved that the unified classification model with the proposed attributes can identify P2P streaming quickly and efficiently in the online system.Even with 1:50 sampling rate,the recognition accuracy can be higher than 94%.Moreover,we have evaluated the CPU resources,storage capacity and time consumption before and after the sampling,it is shown that the classification model after the sampling can significantly reduce the resource requirements with the same recognition accuracy.展开更多
The continual growth of the use of technological appliances during the COVID-19 pandemic has resulted in a massive volume of data flow on the Internet,as many employees have transitioned to working from home.Furthermo...The continual growth of the use of technological appliances during the COVID-19 pandemic has resulted in a massive volume of data flow on the Internet,as many employees have transitioned to working from home.Furthermore,with the increase in the adoption of encrypted data transmission by many people who tend to use a Virtual Private Network(VPN)or Tor Browser(dark web)to keep their data privacy and hidden,network traffic encryption is rapidly becoming a universal approach.This affects and complicates the quality of service(QoS),traffic monitoring,and network security provided by Internet Service Providers(ISPs),particularly for analysis and anomaly detection approaches based on the network traffic’s nature.The method of categorizing encrypted traffic is one of the most challenging issues introduced by a VPN as a way to bypass censorship as well as gain access to geo-locked services.Therefore,an efficient approach is especially needed that enables the identification of encrypted network traffic data to extract and select valuable features which improve the quality of service and network management as well as to oversee the overall performance.In this paper,the classification of network traffic data in terms of VPN and non-VPN traffic is studied based on the efficiency of time-based features extracted from network packets.Therefore,this paper suggests two machine learning models that categorize network traffic into encrypted and non-encrypted traffic.The proposed models utilize statistical features(SF),Pearson Correlation(PC),and a Genetic Algorithm(GA),preprocessing the traffic samples into net flow traffic to accomplish the experiment’s objectives.The GA-based method utilizes a stochastic method based on natural genetics and biological evolution to extract essential features.The PC-based method performs well in removing different features of network traffic.With a microsecond perpacket prediction time,the best model achieved an accuracy of more than 95.02 percent in the most demanding traffic classification ta展开更多
文摘VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions.
基金supported by the National Basic Research Program of China(2007CB310705)the Hi-Tech Research and Development Program of China(2007AA01Z255)+2 种基金the National Natural Science Foundation of China(60711140087)PCSIRT(IRT0609)ISTCP(2006DFA 11040) of China
文摘Classification of network traffic using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. In this article, an approach is presented for online traffic classification relying on the observation of the first n packets of a transmission control protocol (TCP) connection. Its key idea is to utilize the properties of the observed first ten packets of a TCP connection and Bayesian network method to build a classifier. This classifier can classify TCP flows dynamically as packets pass through it by deciding whether a TCP flow belongs to a given application. The experimental results show that the proposed approach performs well in online Internet traffic classification and that it is superior to naive Bayesian method.
基金supported by the National Basic Research Program of China(2009CB320505)
文摘Network traffic classification aims at identifying the application types of network packets. It is important for Internet service providers (ISPs) to manage bandwidth resources and ensure the quality of service for different network applications However, most classification techniques using machine learning only focus on high flow accuracy and ignore byte accuracy. The classifier would obtain low classification performance for elephant flows as the imbalance between elephant flows and mice flows on Internet. The elephant flows, however, consume much more bandwidth than mice flows. When the classifier is deployed for traffic policing, the network management system cannot penalize elephant flows and avoid network congestion effectively. This article explores the factors related to low byte accuracy, and secondly, it presents a new traffic classification method to improve byte accuracy at the aid of data cleaning. Experiments are carried out on three groups of real-world traffic datasets, and the method is compared with existing work on the performance of improving byte accuracy. Experiment shows that byte accuracy increased by about 22.31% on average. The method outperforms the existing one in most cases.
基金supported by State Key Program of National Natural Science Foundation of China under Grant No.61072061111 Project of China under Grant No.B08004the Fundamental Research Funds for the Central Universities under Grant No.2009RC0122
文摘The growing P2P streaming traffic brings a variety of problems and challenges to ISP networks and service providers.A P2P streaming traffic classification method based on sampling technology is presented in this paper.By analyzing traffic statistical features and network behavior of P2P streaming,a group of flow characteristics were found,which can make P2P streaming more recognizable among other applications.Attributes from Netflow and those proposed by us are compared in terms of classification accuracy,and so are the results of different sampling rates.It is proved that the unified classification model with the proposed attributes can identify P2P streaming quickly and efficiently in the online system.Even with 1:50 sampling rate,the recognition accuracy can be higher than 94%.Moreover,we have evaluated the CPU resources,storage capacity and time consumption before and after the sampling,it is shown that the classification model after the sampling can significantly reduce the resource requirements with the same recognition accuracy.
文摘The continual growth of the use of technological appliances during the COVID-19 pandemic has resulted in a massive volume of data flow on the Internet,as many employees have transitioned to working from home.Furthermore,with the increase in the adoption of encrypted data transmission by many people who tend to use a Virtual Private Network(VPN)or Tor Browser(dark web)to keep their data privacy and hidden,network traffic encryption is rapidly becoming a universal approach.This affects and complicates the quality of service(QoS),traffic monitoring,and network security provided by Internet Service Providers(ISPs),particularly for analysis and anomaly detection approaches based on the network traffic’s nature.The method of categorizing encrypted traffic is one of the most challenging issues introduced by a VPN as a way to bypass censorship as well as gain access to geo-locked services.Therefore,an efficient approach is especially needed that enables the identification of encrypted network traffic data to extract and select valuable features which improve the quality of service and network management as well as to oversee the overall performance.In this paper,the classification of network traffic data in terms of VPN and non-VPN traffic is studied based on the efficiency of time-based features extracted from network packets.Therefore,this paper suggests two machine learning models that categorize network traffic into encrypted and non-encrypted traffic.The proposed models utilize statistical features(SF),Pearson Correlation(PC),and a Genetic Algorithm(GA),preprocessing the traffic samples into net flow traffic to accomplish the experiment’s objectives.The GA-based method utilizes a stochastic method based on natural genetics and biological evolution to extract essential features.The PC-based method performs well in removing different features of network traffic.With a microsecond perpacket prediction time,the best model achieved an accuracy of more than 95.02 percent in the most demanding traffic classification ta