In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.Th...In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation.展开更多
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in nor...On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.展开更多
In 2010,the first offshore wind turbine with integrated installation was established in Qidong sea area of Jiangsu Province,China,which led to the implementation phase of one-step-installation technique based on the d...In 2010,the first offshore wind turbine with integrated installation was established in Qidong sea area of Jiangsu Province,China,which led to the implementation phase of one-step-installation technique based on the design and construction of large-scale bucket-top-bearing (LSBTB) bucket foundation.The critical technique of LSBTB bucket foundation included self-floating towing,penetration with adjustment of horizontal levelness,removability and one-step-installation.The process of one-step-installation included the prefabrication of LSBTB bucket foundation in onshore construction base,installation and debugging of wind power,overall water transportation of foundation and wind power system,and installation of foundation and offshore wind turbine on the appointed sea area.The cost of one-step-installation technique was about 5 000 Yuan/kW,which was 30%-50% lower than that of the existing technique.The prefabrication of LSBTB bucket foundation took about two months.During the one-step-installation process,the installation and debugging of wind power and overall water transportation need about one to two days in sea area within 35 m depth.After the proposed technique is industrialized,the cost will be further reduced,and the installation capacity is expected to be up to 500 wind turbines per year.展开更多
Air-floating towing beha viors of multi-bucket foundation plat form (MBFP) are investigated with the 1/20-scale model tests and hydrodynamic so ftware MOSES. MOSES numerical model was val idated by test results, and...Air-floating towing beha viors of multi-bucket foundation plat form (MBFP) are investigated with the 1/20-scale model tests and hydrodynamic so ftware MOSES. MOSES numerical model was val idated by test results, and M OSES prototype model of MBFP can eliminate scale effect of model. The influences of towing factors of to wing speed, water depth, freeboard, and w ave direction on air-floating tow ing stability of MBFP were analyzed by model tests and validated MOSES prototype mod el. It is sho wn that the re duction of towing sp eed can effectively d ecrease the to wing force and surge acceleration to improve towing stability. Water depth is another f actor in towing s tability. Obvious shallow water effect will appear in shallow water with sma ll water depth-draft ratio and it w ill disappear gradually and air-floating towing becomes more stable with the increase of water depth. Accelerations of surge, s way and heave are small and they have modest changes when freeboard increases from 0.5 to 2 m. For MBFP, the freeboard is not suggested to be larger than 2 m in following wave. Wave direction has large influence on the towing stability, the surge acceleration and towing force are sensitive to the va riation of wave direction, the surge acceleration and towing force in following wave (0°) and counter wave (180°) are much larger than that in transverse sea (90°and 270°).展开更多
This paper studies the hydrodynamic performance of a channel type planing trimaran. A numerical simulation is carried out based on a RANS-VOF solver to analyze the hydrodynamic performance of the channel type planing ...This paper studies the hydrodynamic performance of a channel type planing trimaran. A numerical simulation is carried out based on a RANS-VOF solver to analyze the hydrodynamic performance of the channel type planing trimaran. A series of hydrodynamic experiments in towing tank were carried out, in which both the running attitude and the resistance performance of the trimaran model were recorded. Some hydrodynamic characteristics of the channel type planning trimaran are shown by the results. Firstly, the resistance declines significantly, with the forward speed across the high-speed resistance peak due to the combined effects of the aerodynamic and hydrodynamic lifts. Secondly, the resistance performance is influenced markedly by the longitudinal positio- ns of centre of the gravity and the displacements. Besides, the pressure distribution on the hull and the two-phase flow in the channel are discussed in the numerical simulations.展开更多
基金The National Natural Science Foundation of China(No.51109160)the National High Technology Research and Development Program of China(863 Program)(No.2012AA051705)+1 种基金the International S&T Cooperation Program of China(No.2012DFA70490)the Natural Science Foundation of Tianjin(No.13JCQNJC06900,13JCYBJC19100)
文摘In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation.
基金supported by the National Key Research and Development Program of China(No.2016YFC0208005)the Open Research Program of State Key Laboratory of Engine Combustion(No.K2018-11).
文摘On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.
基金Supported by National High Technology Research and Development Program of China("863"Program,No.2012AA051705)National Natural Science Foundation of China(No.51109160)International Science and Technology Cooperation Program of China(No.2012DFA70490)
文摘In 2010,the first offshore wind turbine with integrated installation was established in Qidong sea area of Jiangsu Province,China,which led to the implementation phase of one-step-installation technique based on the design and construction of large-scale bucket-top-bearing (LSBTB) bucket foundation.The critical technique of LSBTB bucket foundation included self-floating towing,penetration with adjustment of horizontal levelness,removability and one-step-installation.The process of one-step-installation included the prefabrication of LSBTB bucket foundation in onshore construction base,installation and debugging of wind power,overall water transportation of foundation and wind power system,and installation of foundation and offshore wind turbine on the appointed sea area.The cost of one-step-installation technique was about 5 000 Yuan/kW,which was 30%-50% lower than that of the existing technique.The prefabrication of LSBTB bucket foundation took about two months.During the one-step-installation process,the installation and debugging of wind power and overall water transportation need about one to two days in sea area within 35 m depth.After the proposed technique is industrialized,the cost will be further reduced,and the installation capacity is expected to be up to 500 wind turbines per year.
基金financially supported by the National Natural Science Foundation of China(Grant No.51309179)the National High Technology Research and Development Program of China(863 Program,Grant No.2012AA051705)+2 种基金the International S&T Cooperation Program of China(Grant No.2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety(Tianjin University)the Tianjin Municipal Natural Science Foundation(Grant No.13JCYBJC19100)
文摘Air-floating towing beha viors of multi-bucket foundation plat form (MBFP) are investigated with the 1/20-scale model tests and hydrodynamic so ftware MOSES. MOSES numerical model was val idated by test results, and M OSES prototype model of MBFP can eliminate scale effect of model. The influences of towing factors of to wing speed, water depth, freeboard, and w ave direction on air-floating tow ing stability of MBFP were analyzed by model tests and validated MOSES prototype mod el. It is sho wn that the re duction of towing sp eed can effectively d ecrease the to wing force and surge acceleration to improve towing stability. Water depth is another f actor in towing s tability. Obvious shallow water effect will appear in shallow water with sma ll water depth-draft ratio and it w ill disappear gradually and air-floating towing becomes more stable with the increase of water depth. Accelerations of surge, s way and heave are small and they have modest changes when freeboard increases from 0.5 to 2 m. For MBFP, the freeboard is not suggested to be larger than 2 m in following wave. Wave direction has large influence on the towing stability, the surge acceleration and towing force are sensitive to the va riation of wave direction, the surge acceleration and towing force in following wave (0°) and counter wave (180°) are much larger than that in transverse sea (90°and 270°).
基金supported by the National Nature Science Foun-dation of China(Grant No.50879014)the Doctoral Program of Higher Education of China(Grant No.200802170010)
文摘This paper studies the hydrodynamic performance of a channel type planing trimaran. A numerical simulation is carried out based on a RANS-VOF solver to analyze the hydrodynamic performance of the channel type planing trimaran. A series of hydrodynamic experiments in towing tank were carried out, in which both the running attitude and the resistance performance of the trimaran model were recorded. Some hydrodynamic characteristics of the channel type planning trimaran are shown by the results. Firstly, the resistance declines significantly, with the forward speed across the high-speed resistance peak due to the combined effects of the aerodynamic and hydrodynamic lifts. Secondly, the resistance performance is influenced markedly by the longitudinal positio- ns of centre of the gravity and the displacements. Besides, the pressure distribution on the hull and the two-phase flow in the channel are discussed in the numerical simulations.