在空间后方交会的解算过程中,利用共线条件方程式列出误差方程后,针对地面控制点以及像点坐标均存在误差这一特点,引入总体最小二乘(total least squares,TLS)的方法,对系数矩阵A以及观测向量b同时进行改正,计算像片的6个外方位元素,建...在空间后方交会的解算过程中,利用共线条件方程式列出误差方程后,针对地面控制点以及像点坐标均存在误差这一特点,引入总体最小二乘(total least squares,TLS)的方法,对系数矩阵A以及观测向量b同时进行改正,计算像片的6个外方位元素,建立更加合理的计算模型,可获得精度更高、更稳定的解。展开更多
Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares ...Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares (STLS) problem.The solution of the STLS problem for passive location can be obtained using the inverse iteration method.It also expatiates that both the STLS algorithm and the CTLS algorithm have the same location mean squares error under certain condition.Finally, the article presents a kind of location and tracking algorithm for moving target by combining STLS location algorithm with Kalman filter (KF).The efficiency and superiority of the proposed algorithms can be confirmed by computer simulation results.展开更多
针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小...针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。展开更多
文摘在空间后方交会的解算过程中,利用共线条件方程式列出误差方程后,针对地面控制点以及像点坐标均存在误差这一特点,引入总体最小二乘(total least squares,TLS)的方法,对系数矩阵A以及观测向量b同时进行改正,计算像片的6个外方位元素,建立更加合理的计算模型,可获得精度更高、更稳定的解。
文摘Based on the constrained total least squares (CTLS) passive location algorithm with bearing-only measurements, in this paper, the same passive location problem is transformed into the structured total least squares (STLS) problem.The solution of the STLS problem for passive location can be obtained using the inverse iteration method.It also expatiates that both the STLS algorithm and the CTLS algorithm have the same location mean squares error under certain condition.Finally, the article presents a kind of location and tracking algorithm for moving target by combining STLS location algorithm with Kalman filter (KF).The efficiency and superiority of the proposed algorithms can be confirmed by computer simulation results.
文摘针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。