In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pr...In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pressure distribution measurement along the wall, the flow separation is found at the top wall of the second S duct for the baseline inlet design, which yields a high flow distortion at the exit plane. To improve the flow uniformity, a single array of vortex generators (VGs) is employed within the inlet. In this experimental study, the effects of mass flow ratio, free stream Mach number, angle of attack and yaw on the performance of a serpentine inlet instrumented with VGs are obtained. Results indicate: (1) Compared with the baseline serpentine design without flow control, the application of the VGs promotes the mixing of core flow and the low momentum flow in the boundary layer and thus prevents the flow separation. Under the design condition, the exit flow distortion (-↑△σ0) decreases from 11.7% to 2.3% by using the VGs. (2) With the descent of the free stream Mach number the total pressure loss decreases. However, the circular total pressure distortion increases. When the angle of attack rises from - 4° to 8°, the total pressure recovery and the circular total pressure distortion both go down. In addition, with the increase of yaw the total pressure recovery is fairly constant, while the circular total pressure distortion ascends gradually. (3) When Mao = 0.6-0.8, a = -4°-8° and β = 0°-6°, the total pressure recovery varies between 0.936 and 0. 961, the circular total pressure distortion coefficient varies between 1.4 % and 5.4 % and the synthesis distortion coefficient has a ranges from 3.8 % to 7.0 %. The experimental results confirm the excellent performance of the newly designed serpentine inlet incorporating VGs.展开更多
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach...Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach has been popular for turbulent flow computations.The most widely used ones,such as the standard k-εmodel,have well-recognized deficiencies when treating time dependent flow field.To identify ways to improve the predictive capability of the current RANS-based engineering turbulence closures,conditional averaging is adopted for the Navier-Stokes equation,and one more parameter,based on the filter size,is introduced into the k-εmodel.In the Partially Averaged Navier-Stokes(PANS)model,the filter width is mainly controlled by the ratio of unresolved-to-total kinetic energy1f.This model is assessed in unsteady cavitating flows over a Clark-Y hydrofoil.From the experimental validations regarding the forces,frequencies,cavity visualizations and velocity distributions,the PANS model is shown to improve the predictive capability considerably,in comparison to the standard k-ε model,and also,it is observed the value of1f in the PANS model has substantial influence on the predicting result.As the filter width1f is decreased,the PANS model can effectively reduce the eddy viscosity near the closure region which can significantly influence the capture of the detach cavity,and this model can reproduce the time-averaged velocity quantitatively around the hydrofoil.展开更多
This paper presents an investigation on the effect of probe support on the flow field of an axial compressor.The experiment is carried out in a large-scale low-speed research compressor.A cylindrical probe support int...This paper presents an investigation on the effect of probe support on the flow field of an axial compressor.The experiment is carried out in a large-scale low-speed research compressor.A cylindrical probe support intruding to 50% blade span was installed at 50% chord upstream from the rotor leading edge.The region from 5° to 32° off the probe support in the direction of rotation at the rotor outlet was measured with a 5-hole probe and a high-response total pressure probe.The experiment is performed at both near-design and near-stall points.The measuring results of 5-hole probe and high-response total pressure probe indicate that the probe blockage effect is different at different blade spans.The wake of the probe support weakens the leakage vortex intensity at the tip region,leading to greater total pressure rise.At near-design condition,the presence of probe support has a negative effect on the region from 75% to 92% span,while improves the flow field below 75% span.At near stall condition,the probe support has a negative effect on the region from 70% to 90% span,and almost has no influence on the flow field below 70% span.展开更多
A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Se...A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.展开更多
In order to explore the total-pressure distortion test assessment method for a turbofan engine, a Controlled Variable Double-Baffle Distortion Generator(CVDBDG) with a horizontal symmetry moving form was developed, wh...In order to explore the total-pressure distortion test assessment method for a turbofan engine, a Controlled Variable Double-Baffle Distortion Generator(CVDBDG) with a horizontal symmetry moving form was developed, which can adjust the steady-state and time–variant distortion separately in real time. The inlet total-pressure distortion test was conducted on an afterburner turbofan engine. The distortion parameters of CVDBDG and the instability characteristics of the engine were measured. The experimental data were modeled and analyzed by using back propagation artificial neural networks, and the work envelope of CVDBDG was obtained. Based on the analysis of the data on the engine’s instability, the properties of CVDBDG used for the stability assessment were preliminarily evaluated. The results show that CVDBDG can simulate both steady-state and time–variant distortions simultaneously in a range determined by three envelopes.Under the condition of symmetric double baffles, a critical depth of insertion exists, beyond which the symmetric baffles will generate an asymmetric flow field. In the case of double baffles, compared to a single baffle, the engine exhibited different instability characteristics. Based on CVDBDG, it is expected that more efficient engine stability and durability assessment methods can be developed.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice.To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m)and energy(E)le...The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice.To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m)and energy(E)levels,the transient Magneto Hydro Dynamics(MHD)method,completed by high temperature thermodynamic and transport,and plasma electrical models,is developed to study argon plasma response under the excitation of current of high rise rate.By calculating the two-dimensional expansion properties of the thruster with conical pylon,the simulations find that the main energy deposition occurs during the initial pulse rise stage,and the energy density of Joule heat is two magnitudes higher than the deposition in the down side.At propellant mass of 2 mg,average axial velocity of the current sheet increases from about 15 km/s at 750 J to about 21 km/s at 1470 J within the decoupling distance.The velocity variation synchronizes with the pulsed rise in the initial.The monotonically decrease of the temperature along axis results in the growth of low ionization level ions and reducing of high levels.The current sheet maintains the structure formed during the initial pulse rise when moving beyond the decoupling distance.Besides the change in forward velocity,the main difference is the dimension compared with that in the first half period,caused by thermal conduction and particle diffusion.The variations of total impulse It in the range of m from 2 mg to8 mg and E from 750 J to 1470 J show that It is proportional to m1/2 when E is determined.展开更多
文摘In order to provide the line-of-sight blockage of the engine face for an advanced Uninhabited Combat Air Vehicle(UCAV), a highly curved serpentine inlet is proposed and experimentally studied. Based on the static pressure distribution measurement along the wall, the flow separation is found at the top wall of the second S duct for the baseline inlet design, which yields a high flow distortion at the exit plane. To improve the flow uniformity, a single array of vortex generators (VGs) is employed within the inlet. In this experimental study, the effects of mass flow ratio, free stream Mach number, angle of attack and yaw on the performance of a serpentine inlet instrumented with VGs are obtained. Results indicate: (1) Compared with the baseline serpentine design without flow control, the application of the VGs promotes the mixing of core flow and the low momentum flow in the boundary layer and thus prevents the flow separation. Under the design condition, the exit flow distortion (-↑△σ0) decreases from 11.7% to 2.3% by using the VGs. (2) With the descent of the free stream Mach number the total pressure loss decreases. However, the circular total pressure distortion increases. When the angle of attack rises from - 4° to 8°, the total pressure recovery and the circular total pressure distortion both go down. In addition, with the increase of yaw the total pressure recovery is fairly constant, while the circular total pressure distortion ascends gradually. (3) When Mao = 0.6-0.8, a = -4°-8° and β = 0°-6°, the total pressure recovery varies between 0.936 and 0. 961, the circular total pressure distortion coefficient varies between 1.4 % and 5.4 % and the synthesis distortion coefficient has a ranges from 3.8 % to 7.0 %. The experimental results confirm the excellent performance of the newly designed serpentine inlet incorporating VGs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50679001, 50979004)the Fundation from State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology
文摘Cavitation typically occurs when the fluid pressure is lower than the vapor pressure in a local thermodynamic state,and the flow is frequently unsteady and turbulent.The Reynolds-Averaged Navier-Stokes(RANS)approach has been popular for turbulent flow computations.The most widely used ones,such as the standard k-εmodel,have well-recognized deficiencies when treating time dependent flow field.To identify ways to improve the predictive capability of the current RANS-based engineering turbulence closures,conditional averaging is adopted for the Navier-Stokes equation,and one more parameter,based on the filter size,is introduced into the k-εmodel.In the Partially Averaged Navier-Stokes(PANS)model,the filter width is mainly controlled by the ratio of unresolved-to-total kinetic energy1f.This model is assessed in unsteady cavitating flows over a Clark-Y hydrofoil.From the experimental validations regarding the forces,frequencies,cavity visualizations and velocity distributions,the PANS model is shown to improve the predictive capability considerably,in comparison to the standard k-ε model,and also,it is observed the value of1f in the PANS model has substantial influence on the predicting result.As the filter width1f is decreased,the PANS model can effectively reduce the eddy viscosity near the closure region which can significantly influence the capture of the detach cavity,and this model can reproduce the time-averaged velocity quantitatively around the hydrofoil.
基金funded by the National Natural Science Foundation of China,Grant No.51161130525,51136003,and the 111 Project,No.B07009
文摘This paper presents an investigation on the effect of probe support on the flow field of an axial compressor.The experiment is carried out in a large-scale low-speed research compressor.A cylindrical probe support intruding to 50% blade span was installed at 50% chord upstream from the rotor leading edge.The region from 5° to 32° off the probe support in the direction of rotation at the rotor outlet was measured with a 5-hole probe and a high-response total pressure probe.The experiment is performed at both near-design and near-stall points.The measuring results of 5-hole probe and high-response total pressure probe indicate that the probe blockage effect is different at different blade spans.The wake of the probe support weakens the leakage vortex intensity at the tip region,leading to greater total pressure rise.At near-design condition,the presence of probe support has a negative effect on the region from 75% to 92% span,while improves the flow field below 75% span.At near stall condition,the probe support has a negative effect on the region from 70% to 90% span,and almost has no influence on the flow field below 70% span.
基金Supported by the National Natural Science Foundation of China (61174040, 61104178)the Fundamental Research Funds for the Central Universities
文摘A discrete artificial bee colony algorithm is proposed for solving the blocking flow shop scheduling problem with total flow time criterion. Firstly, the solution in the algorithm is represented as job permutation. Secondly, an initialization scheme based on a variant of the NEH (Nawaz-Enscore-Ham) heuristic and a local search is designed to construct the initial population with both quality and diversity. Thirdly, based on the idea of iterated greedy algorithm, some newly designed schemes for employed bee, onlooker bee and scout bee are presented. The performance of the proposed algorithm is tested on the well-known Taillard benchmark set, and the computational results demonstrate the effectiveness of the discrete artificial bee colony algorithm. In addition, the best known solutions of the benchmark set are provided for the blocking flow shop scheduling problem with total flow time criterion.
基金supported by the Beijing Aeronautical Technology Research Center
文摘In order to explore the total-pressure distortion test assessment method for a turbofan engine, a Controlled Variable Double-Baffle Distortion Generator(CVDBDG) with a horizontal symmetry moving form was developed, which can adjust the steady-state and time–variant distortion separately in real time. The inlet total-pressure distortion test was conducted on an afterburner turbofan engine. The distortion parameters of CVDBDG and the instability characteristics of the engine were measured. The experimental data were modeled and analyzed by using back propagation artificial neural networks, and the work envelope of CVDBDG was obtained. Based on the analysis of the data on the engine’s instability, the properties of CVDBDG used for the stability assessment were preliminarily evaluated. The results show that CVDBDG can simulate both steady-state and time–variant distortions simultaneously in a range determined by three envelopes.Under the condition of symmetric double baffles, a critical depth of insertion exists, beyond which the symmetric baffles will generate an asymmetric flow field. In the case of double baffles, compared to a single baffle, the engine exhibited different instability characteristics. Based on CVDBDG, it is expected that more efficient engine stability and durability assessment methods can be developed.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.
基金supported by the National Natural Science Foundation of China(Nos.11675040 and 11702319).
文摘The pulsed inductive thruster is characterized of no electrode corruption and wide propellant choice.To give insight into the propulsion mechanism of small scale thruster at different propellant mass(m)and energy(E)levels,the transient Magneto Hydro Dynamics(MHD)method,completed by high temperature thermodynamic and transport,and plasma electrical models,is developed to study argon plasma response under the excitation of current of high rise rate.By calculating the two-dimensional expansion properties of the thruster with conical pylon,the simulations find that the main energy deposition occurs during the initial pulse rise stage,and the energy density of Joule heat is two magnitudes higher than the deposition in the down side.At propellant mass of 2 mg,average axial velocity of the current sheet increases from about 15 km/s at 750 J to about 21 km/s at 1470 J within the decoupling distance.The velocity variation synchronizes with the pulsed rise in the initial.The monotonically decrease of the temperature along axis results in the growth of low ionization level ions and reducing of high levels.The current sheet maintains the structure formed during the initial pulse rise when moving beyond the decoupling distance.Besides the change in forward velocity,the main difference is the dimension compared with that in the first half period,caused by thermal conduction and particle diffusion.The variations of total impulse It in the range of m from 2 mg to8 mg and E from 750 J to 1470 J show that It is proportional to m1/2 when E is determined.