Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasi...Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.展开更多
Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w...Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.展开更多
This study presents a significant contribution to the field of water quality assessment and sustainable water management practices. By evaluating the levels of total dissolved solids (TDS) in seawater intakes within A...This study presents a significant contribution to the field of water quality assessment and sustainable water management practices. By evaluating the levels of total dissolved solids (TDS) in seawater intakes within Al-Khobar desalination production system, the study addresses a crucial aspect of water treatment and environmental impact assessment. The findings provide valuable insights into the variations and trends of TDS levels across different phases of the system, highlighting the importance of monitoring and management strategies. The study provided both gravimetric total dissolved solids (TDS) and electrical conductivity (EC) measurements to analyze TDS calculation factor and evaluate measurement accuracy. Results revealed significant variations in TDS levels across the sampling locations, with phase-2 exhibiting higher levels and greater fluctuations. Phase-3 displayed similar trends but with lower TDS levels, while phase-4 showed slightly different behavior with higher average TDS levels. EC measurements demonstrated a strong correlation with TDS, providing a reliable estimation. However, additional methods such as gravimetric analysis should be employed to confirm TDS measurements. The findings contribute to understanding water quality in the Al-Khobar desalination system, aiding in monitoring, management, and decision-making processes for water treatment and environmental impact assessment. The study enhances the credibility of water quality assessments and supports sustainable water management practices.展开更多
This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig...This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.展开更多
文摘Groundwater is increasingly being used due to its universal availability and generally good quality. However, the risk of contamination of groundwater due to various human activities such as mining is equally increasing across the globe. In this study, the physical parameters of potable well waters in the key mining areas in Nimikoro and Tankoro Chiefdoms in Kono District were analyzed for compliance with drinking water quality standard. To do this, both unpurged and purged well water samples were collected once every month for a period of one year. Some of the well water properties like temperature, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured on site and others determined in the laboratory. The data collected from the laboratory analyses were statistically analyzed in MS Excel, SPSS and ArcGIS environments for quality trends in time-space fabric. The results showed that well water quality in the study area generally fell short of drinking water quality standards of Sierra Leone and WHO. There were high temperature and turbidity during the dry season and then high TDS and EC during the rainy season. Temperature and turbidity also significantly influenced well water quality in the study area, much more than TDS and EC. The implications for drinking water of lower quality than the standard could be huge for the local population and therefore needs the attention of stakeholders in the study area and decision makers in the country.
文摘Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.
文摘This study presents a significant contribution to the field of water quality assessment and sustainable water management practices. By evaluating the levels of total dissolved solids (TDS) in seawater intakes within Al-Khobar desalination production system, the study addresses a crucial aspect of water treatment and environmental impact assessment. The findings provide valuable insights into the variations and trends of TDS levels across different phases of the system, highlighting the importance of monitoring and management strategies. The study provided both gravimetric total dissolved solids (TDS) and electrical conductivity (EC) measurements to analyze TDS calculation factor and evaluate measurement accuracy. Results revealed significant variations in TDS levels across the sampling locations, with phase-2 exhibiting higher levels and greater fluctuations. Phase-3 displayed similar trends but with lower TDS levels, while phase-4 showed slightly different behavior with higher average TDS levels. EC measurements demonstrated a strong correlation with TDS, providing a reliable estimation. However, additional methods such as gravimetric analysis should be employed to confirm TDS measurements. The findings contribute to understanding water quality in the Al-Khobar desalination system, aiding in monitoring, management, and decision-making processes for water treatment and environmental impact assessment. The study enhances the credibility of water quality assessments and supports sustainable water management practices.
文摘This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.