Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties.Topological D-class phases(TDPs)are archetypes of the ten-fold classification of to...Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties.Topological D-class phases(TDPs)are archetypes of the ten-fold classification of topological phases with particle-hole symmetry.In two dimensions,TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles.Furthermore,a piercing ofπ-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that can be braided for the purpose of topological quantum computation.Such two-dimensional(2D)TDPs have been a focus in the research frontier,but their experimental realizations are still under debate.Here,with a novel design scheme,we realize 2D TDPs in an acoustic crystal by synthesizing both the particle-hole and fermion-like time reversal symmetries for a wide range of frequencies.The design scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted Hamiltonian of TDPs with complex hoppings:A technique that could unlock the realization of all topological classes with passive metamaterials.In our experiments,we realize a pair of TDPs with opposite Chern numbers in two independent sectors that are connected by an intrinsic fermion-like timereversal symmetry built in the system.We measure the acoustic Majorana-like helical edge modes and visualize their robust topological transport,thus revealing the unprecedented D and DIII class topologies with direct evidence.Our study opens up a new pathway for the experimental realization of two fundamental classes of topological phases and may offer new insights in fundamental physics,materials science,and phononic information processing.展开更多
We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or...We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.展开更多
为了使网络对业务具感知和控制能力,提出了一种基于互联网的可控业务网体系架构——INACOS(Internet based net-work architecture with controllable service)。该架构在现有的互联网承载层之上应用层之下增加一个业务垫层,实现对电信...为了使网络对业务具感知和控制能力,提出了一种基于互联网的可控业务网体系架构——INACOS(Internet based net-work architecture with controllable service)。该架构在现有的互联网承载层之上应用层之下增加一个业务垫层,实现对电信业务共性功能的支持、控制和管理。通过INACOS,可以在不改动互联网承载设备和协议的情况下,为网络增加对业务的感知和控制能力,从而为用户业务提供较好的服务质量和较高的安全性。最后,通过一个INACOS原型系统,表明了该架构的可行性。展开更多
基金the support from the National Key R&D Program of China(2022YFA1404400)the National Natural Science Foundation of China(12125504 and 12074281)+5 种基金the support from the National Natural Science Foundation of China(12047541)the Gusu Leading Innovation Scientists Program of Suzhou City,and the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutionsthe Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)support from the US National Science Foundation(CMMI2131759)support from the US National Science Foundation(DMR-1823800 and CMMI-2131760)the U.S.Army Research Office through contract W911NF-23-1-0127。
文摘Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties.Topological D-class phases(TDPs)are archetypes of the ten-fold classification of topological phases with particle-hole symmetry.In two dimensions,TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles.Furthermore,a piercing ofπ-flux Dirac-solenoids in TDPs stabilizes localized Majorana excitations that can be braided for the purpose of topological quantum computation.Such two-dimensional(2D)TDPs have been a focus in the research frontier,but their experimental realizations are still under debate.Here,with a novel design scheme,we realize 2D TDPs in an acoustic crystal by synthesizing both the particle-hole and fermion-like time reversal symmetries for a wide range of frequencies.The design scheme leverages an enriched unit cell structure with real-valued couplings that emulate the targeted Hamiltonian of TDPs with complex hoppings:A technique that could unlock the realization of all topological classes with passive metamaterials.In our experiments,we realize a pair of TDPs with opposite Chern numbers in two independent sectors that are connected by an intrinsic fermion-like timereversal symmetry built in the system.We measure the acoustic Majorana-like helical edge modes and visualize their robust topological transport,thus revealing the unprecedented D and DIII class topologies with direct evidence.Our study opens up a new pathway for the experimental realization of two fundamental classes of topological phases and may offer new insights in fundamental physics,materials science,and phononic information processing.
文摘We utilize homology and co-homology of a K3-Kähler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements.
文摘为了使网络对业务具感知和控制能力,提出了一种基于互联网的可控业务网体系架构——INACOS(Internet based net-work architecture with controllable service)。该架构在现有的互联网承载层之上应用层之下增加一个业务垫层,实现对电信业务共性功能的支持、控制和管理。通过INACOS,可以在不改动互联网承载设备和协议的情况下,为网络增加对业务的感知和控制能力,从而为用户业务提供较好的服务质量和较高的安全性。最后,通过一个INACOS原型系统,表明了该架构的可行性。