A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical techn...A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.展开更多
The electrical conductivity of graphite dispersions in potassium chloride (KCl) solutions in the alternating (1000 Hz) and constant electric field has been measured. In the alternating electric field (0.0005 - 0.01 М...The electrical conductivity of graphite dispersions in potassium chloride (KCl) solutions in the alternating (1000 Hz) and constant electric field has been measured. In the alternating electric field (0.0005 - 0.01 М KCI) the electrical conductivity increases depending on the mass fraction of the dispersed phase. In the constant electrical conductivity (0.001 - 0.01 M KCl) the electrical conductivity changes slightly depending on the mass fraction of the dispersed phase (up to 15 % of the mass.). The electrical conductivity increases in case the dispersed phase contains 15% - 20% (mass.). In more concentrated solutions (0.1 M KCl) in the alternating and constant electric field the dependence of the electrical conductivity of the suspension decreased, and then it increased when the dispersed phase exceeded 15% - 20% (mass.). A model of the electrical conductivity of graphite dispersions in electrolytes is offered. The main contribution to the increase in the electrical conductivity in dilute electrolytes in the alternating electric field is made by the polarization of particles due to their surface conductivity. It is suggested that the aggregation of graphite particles occurs at dispersed phase concentrations of more than 15% - 20% (mass).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51109106)the Natural Science Foundation of Jiangsu Province(Grant No.BK20130946)the Qing Lan Project of Jiangsu Province
文摘A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.
文摘The electrical conductivity of graphite dispersions in potassium chloride (KCl) solutions in the alternating (1000 Hz) and constant electric field has been measured. In the alternating electric field (0.0005 - 0.01 М KCI) the electrical conductivity increases depending on the mass fraction of the dispersed phase. In the constant electrical conductivity (0.001 - 0.01 M KCl) the electrical conductivity changes slightly depending on the mass fraction of the dispersed phase (up to 15 % of the mass.). The electrical conductivity increases in case the dispersed phase contains 15% - 20% (mass.). In more concentrated solutions (0.1 M KCl) in the alternating and constant electric field the dependence of the electrical conductivity of the suspension decreased, and then it increased when the dispersed phase exceeded 15% - 20% (mass.). A model of the electrical conductivity of graphite dispersions in electrolytes is offered. The main contribution to the increase in the electrical conductivity in dilute electrolytes in the alternating electric field is made by the polarization of particles due to their surface conductivity. It is suggested that the aggregation of graphite particles occurs at dispersed phase concentrations of more than 15% - 20% (mass).