The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutte...The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutter in the rough machining of a blisk channel, the trochoidal milling is a promising strategy since it can keep a small immersion angle in the rough milling process while maintaining the high machining efficiency. However, while toolpaths are being planned for the trochoidal milling process, the conventional methods are mainly for the planar machining area with fixed tool orientations, which cannot be used for complex channels where the multi-axis machining should be employed. To this end, this paper presents a four-axis trochoidal toolpath planning method with a ball-end cutter, and thus the blisk channel can be machined efficiently.For this to happen, the trochoidal paths are planned in the parametric domain and then mapped into the physical domain, with tool orientations controlled by the quaternion interpolation method to have smooth tool movement along the toolpaths. Both geometric simulation and physical milling experiments of the proposed method have convincingly demonstrated the validation of the proposed method.展开更多
The inherent capabilities of additive manufacturing(AM)to fabricate porous lattice structures with controllable structural and functional properties have raised interest in the design methods for the production of ext...The inherent capabilities of additive manufacturing(AM)to fabricate porous lattice structures with controllable structural and functional properties have raised interest in the design methods for the production of extremely in-tricate internal geometries.Current popular methods of porous lattice structure design still follow the traditional flow,which mainly consists of computer-aided design(CAD)model construction,STereoLithography(STL)model conversion,slicing model acquisition,and toolpath configuration,which causes a loss of accuracy and manufac-turability uncertainty in AM preparation stages.Moreover,toolpath configuration relies on a knowledge-based approach summarized by expert systems.In this process,geometrical construction information is always ignored when a CAD model is created or constructed.To fully use this geometrical information,avoid accuracy loss and ensure qualified manufacturability of porous lattice structures,this paper proposes a novel toolpath-based con-structive design method to directly generate toolpath printing file of parametric and controllable porous lattice structures to facilitate model data exchange during the AM preparation stages.To optimize the laser jumping route between lattice cells,we use a hybrid travelling salesman problem(TSP)solver to determine the laser jumping points on contour scans.Four kinds of laser jumping orders are calculated and compared to select a minimal laser jumping route for sequence planning inside lattice cells.Hence,the proposed method can achieve high-precision lattice printing and avoid computational consumption in model conversion stages from a geomet-rical view.The optical metallographic images show that the shape accuracy of lattice patterns can be guaranteed.The existence of“grain boundaries”brought about by the multi-contour scanning strategy may lead to different mechanical properties.展开更多
Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center ...Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center toolpath is of G1 continuity and that the grinding depth is controllable at the corners,a transition toolpath generation method based on a velocity-blending algorithm is proposed.Taking the grinding depth into consideration,the sharp-corner grinding process is planned,and a velocity-blending algorithm is introduced.With the constraints,such as traverse displacement and grinding depth,the sharp-corner transition toolpath is generated with a three-phase motion arrangement and with confirmations of the acceleration/deceleration positions.A piece of glass with three sharp corners is ground on a three-axis numerical-control glass grinding equipment.The experimental results demonstrate that the proposed algorithm can protect the sharp corners from breakage efficiently and achieve satisfactory shape accuracy.This research proposed a toolpath generation method based on a velocity-blending algorithm for the manufacturing of personalized glass products,which generates the transition toolpath as needed around a sharp corner in real time.展开更多
基金supported by the China National Science and Technology Major Project(No.2015ZX04001202)
文摘The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutter in the rough machining of a blisk channel, the trochoidal milling is a promising strategy since it can keep a small immersion angle in the rough milling process while maintaining the high machining efficiency. However, while toolpaths are being planned for the trochoidal milling process, the conventional methods are mainly for the planar machining area with fixed tool orientations, which cannot be used for complex channels where the multi-axis machining should be employed. To this end, this paper presents a four-axis trochoidal toolpath planning method with a ball-end cutter, and thus the blisk channel can be machined efficiently.For this to happen, the trochoidal paths are planned in the parametric domain and then mapped into the physical domain, with tool orientations controlled by the quaternion interpolation method to have smooth tool movement along the toolpaths. Both geometric simulation and physical milling experiments of the proposed method have convincingly demonstrated the validation of the proposed method.
文摘The inherent capabilities of additive manufacturing(AM)to fabricate porous lattice structures with controllable structural and functional properties have raised interest in the design methods for the production of extremely in-tricate internal geometries.Current popular methods of porous lattice structure design still follow the traditional flow,which mainly consists of computer-aided design(CAD)model construction,STereoLithography(STL)model conversion,slicing model acquisition,and toolpath configuration,which causes a loss of accuracy and manufac-turability uncertainty in AM preparation stages.Moreover,toolpath configuration relies on a knowledge-based approach summarized by expert systems.In this process,geometrical construction information is always ignored when a CAD model is created or constructed.To fully use this geometrical information,avoid accuracy loss and ensure qualified manufacturability of porous lattice structures,this paper proposes a novel toolpath-based con-structive design method to directly generate toolpath printing file of parametric and controllable porous lattice structures to facilitate model data exchange during the AM preparation stages.To optimize the laser jumping route between lattice cells,we use a hybrid travelling salesman problem(TSP)solver to determine the laser jumping points on contour scans.Four kinds of laser jumping orders are calculated and compared to select a minimal laser jumping route for sequence planning inside lattice cells.Hence,the proposed method can achieve high-precision lattice printing and avoid computational consumption in model conversion stages from a geomet-rical view.The optical metallographic images show that the shape accuracy of lattice patterns can be guaranteed.The existence of“grain boundaries”brought about by the multi-contour scanning strategy may lead to different mechanical properties.
基金Supported by National Key R&D Program of China(Grant No.2017YFB0309800)National Natural Science Foundation of China(Grant No.51405445)
文摘Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center toolpath is of G1 continuity and that the grinding depth is controllable at the corners,a transition toolpath generation method based on a velocity-blending algorithm is proposed.Taking the grinding depth into consideration,the sharp-corner grinding process is planned,and a velocity-blending algorithm is introduced.With the constraints,such as traverse displacement and grinding depth,the sharp-corner transition toolpath is generated with a three-phase motion arrangement and with confirmations of the acceleration/deceleration positions.A piece of glass with three sharp corners is ground on a three-axis numerical-control glass grinding equipment.The experimental results demonstrate that the proposed algorithm can protect the sharp corners from breakage efficiently and achieve satisfactory shape accuracy.This research proposed a toolpath generation method based on a velocity-blending algorithm for the manufacturing of personalized glass products,which generates the transition toolpath as needed around a sharp corner in real time.