In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to ...In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction.展开更多
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S...Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.展开更多
基金This work was funded by the National Key R&D Program of China(2019YFC1509205)the National Natural Science Foundation of China(Nos.42174023 and 41804015)+1 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(150110074)the Postgraduate Scientific Research Innovation Project of Central South University(212191010).
文摘In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060201)the National Natural Science Foundation of China(Grant No.42067046)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10).
文摘Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts.