Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principl...Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.展开更多
Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheo...Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheological parameter that would address the rutting susceptibility of both unmodified and modified bituminous binders. In this research, three warm mix additives(Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder. The rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery(MSCR)-based parameter, nonrecoverable compliance(Jnr) and recovery parameter(R). Several performance tests carried on stone matrix asphalt(SMA) mixtures comprising different nominal maximum aggregate sizes(NMASs, 9.5, 12.5 and 19 mm), like Marshall stability, dynamic and static creep and Hamburg wheel tracking tests to evaluate their rutting performance. The objective of this work is to correlate MSCR test results to performance. Results indicate that for the range of the gradations investigated in this work, increasing the nominal maximum aggregate size of the gradation would increase the permanent deformation resistance of the SMA mixture. Addition of 3% sasobit to base binder leads an increase in Jnr100 about 82%. Addition of 2% rheofalt to base binder leads an recovery increase of about 9.76 % and 27.44% in stress levels of 100 and 3200 Pa, respectively. The results reveal that rutting resistance of mixtures improves as Jnr decreases. The use of the MSCR test in the rutting characterization of bituminous binders is highly recommended based on the results of this work.展开更多
It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time impleme...It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time implementation is considered a challenge for scholars.In this paper,the development of simulation model of extended Kalman filter(EKF)in MATLAB/Simulink is presented to estimate various railway wheelset parameters in different contact conditions of track.Due to concurrent in nature,the Xilinx®System-on-Chip Zynq Field Programmable Gate Array(FPGA)device is chosen to check the onboard estimation ofwheel-rail interaction parameters by using the National Instruments(NI)myRIO®development board.The NImyRIO®development board is flexible to deal with nonlinearities,uncertain changes,and fastchanging dynamics in real-time occurring in wheel-rail contact conditions during vehicle operation.The simulated dataset of the railway nonlinear wheelsetmodel is tested on FPGA-based EKF with different track conditions and with accelerating and decelerating operations of the vehicle.The proposed model-based estimation of railway wheelset parameters is synthesized on FPGA and its simulation is carried out for functional verification on FPGA.The obtained simulation results are aligned with the simulation results obtained through MATLAB.To the best of our knowledge,this is the first time study that presents the implementation of a model-based estimation of railway wheelset parameters on FPGA and its functional verification.The functional behavior of the FPGA-based estimator shows that these results are the addition of current knowledge in the field of the railway.展开更多
基金supported by the National Natural Science Foundation of China (11072030)
文摘Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.
文摘Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheological parameter that would address the rutting susceptibility of both unmodified and modified bituminous binders. In this research, three warm mix additives(Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder. The rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery(MSCR)-based parameter, nonrecoverable compliance(Jnr) and recovery parameter(R). Several performance tests carried on stone matrix asphalt(SMA) mixtures comprising different nominal maximum aggregate sizes(NMASs, 9.5, 12.5 and 19 mm), like Marshall stability, dynamic and static creep and Hamburg wheel tracking tests to evaluate their rutting performance. The objective of this work is to correlate MSCR test results to performance. Results indicate that for the range of the gradations investigated in this work, increasing the nominal maximum aggregate size of the gradation would increase the permanent deformation resistance of the SMA mixture. Addition of 3% sasobit to base binder leads an increase in Jnr100 about 82%. Addition of 2% rheofalt to base binder leads an recovery increase of about 9.76 % and 27.44% in stress levels of 100 and 3200 Pa, respectively. The results reveal that rutting resistance of mixtures improves as Jnr decreases. The use of the MSCR test in the rutting characterization of bituminous binders is highly recommended based on the results of this work.
文摘It is necessary to know the status of adhesion conditions between wheel and rail for efficient accelerating and decelerating of railroad vehicle.The proper estimation of adhesion conditions and their real-time implementation is considered a challenge for scholars.In this paper,the development of simulation model of extended Kalman filter(EKF)in MATLAB/Simulink is presented to estimate various railway wheelset parameters in different contact conditions of track.Due to concurrent in nature,the Xilinx®System-on-Chip Zynq Field Programmable Gate Array(FPGA)device is chosen to check the onboard estimation ofwheel-rail interaction parameters by using the National Instruments(NI)myRIO®development board.The NImyRIO®development board is flexible to deal with nonlinearities,uncertain changes,and fastchanging dynamics in real-time occurring in wheel-rail contact conditions during vehicle operation.The simulated dataset of the railway nonlinear wheelsetmodel is tested on FPGA-based EKF with different track conditions and with accelerating and decelerating operations of the vehicle.The proposed model-based estimation of railway wheelset parameters is synthesized on FPGA and its simulation is carried out for functional verification on FPGA.The obtained simulation results are aligned with the simulation results obtained through MATLAB.To the best of our knowledge,this is the first time study that presents the implementation of a model-based estimation of railway wheelset parameters on FPGA and its functional verification.The functional behavior of the FPGA-based estimator shows that these results are the addition of current knowledge in the field of the railway.