针对北斗2导航卫星之间通过星间链路进行距离测量和时间同步以实现星座自主导航功能,提出了一种动态环境下基于伪码高精度距离测量和时间同步技术。它根据狭义相对论中光速不变基本原理,扩展了静态环境下双向测距和时间同步(Two-Way Ran...针对北斗2导航卫星之间通过星间链路进行距离测量和时间同步以实现星座自主导航功能,提出了一种动态环境下基于伪码高精度距离测量和时间同步技术。它根据狭义相对论中光速不变基本原理,扩展了静态环境下双向测距和时间同步(Two-Way Ranging and Time Transmit,TWRTT)技术,使之适用于北斗2导航卫星这样的动态环境之下。理论、仿真以及工程可实现性分析表明:利用该技术,北斗2导航卫星星间测距精度可达厘米级,时间同步精度优于1ns。展开更多
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS...The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.展开更多
A time domain prediction of wave-induced ship motions by a Rankine panel method is investigated. Linear boundary conditions on free surface and mean wetted body surface are adopted, while the numerical damping method ...A time domain prediction of wave-induced ship motions by a Rankine panel method is investigated. Linear boundary conditions on free surface and mean wetted body surface are adopted, while the numerical damping method is used for the radiation conditions. The motions of two ships in regular head waves are computed by the present method. The related numerical results are compared with the experiment data and those from linear strip theory. The comparison shows satisfactory agreements for pitch and heave transfer functions.展开更多
In this paper, we consider the local time and the self-intersection local time for a bifractional Brownian motion, and the collision local time for two independent bifractional Brownian motions. We mainly prove the ex...In this paper, we consider the local time and the self-intersection local time for a bifractional Brownian motion, and the collision local time for two independent bifractional Brownian motions. We mainly prove the existence and smoothness of the self-intersection local time and the collision local time, through the strong local nondeterminism of bifractional Brownian motion, L2 convergence and Chaos expansion.展开更多
In this paper,a CFD/CSD model coupling N-S equations and structural equations of motion in the time domain is described for aeroelastic analysis of large wind turbines.The structural modes of blades are analyzed with ...In this paper,a CFD/CSD model coupling N-S equations and structural equations of motion in the time domain is described for aeroelastic analysis of large wind turbines.The structural modes of blades are analyzed with one-dimensional beam models.By combining point matched sliding grid for wind turbine rotation and deforming grid for structural vibrations,a hybrid dynamic grid strategy is designed for the multi-block structured grid system of a wind turbine.The dual time-stepping approach and finite volume scheme are applied to the three-dimensional unsteady preconditioned N-S equations,and DES approach is employed to simulate the unsteady massively separated flows.A modal approach is adopted to calculate the structural response,and a predictor-corrector scheme is used to solve the structural equations of motion.CFD and CSD solvers are tightly coupled via successive iterations within each physical time step.As a result,a time-domain CFD/CSD model for aeroelastic analysis of a large wind turbine is achieved.The presented method is applied to the NH1500 large wind turbine under the rated condition,and the calculated aeroelastic characteristics agree well with those of the prescribed vortex wake method.展开更多
In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the colli...In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the collision local time process is studied.展开更多
We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary2 D display for output. The Kinect camera allows a 3D model of each participant to b...We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary2 D display for output. The Kinect camera allows a 3D model of each participant to be transmitted;the(assumed static) background is sent separately.Furthermore, the Kinect tracks the receiver's head,allowing our system to render a view of the sender depending on the receiver's viewpoint. The resulting motion parallax gives the receivers a strong impression of 3D viewing as they move, yet the system only needs an ordinary 2D display. This is cheaper than a full3 D system, and avoids disadvantages such as the need to wear shutter glasses, VR headsets, or to sit in a particular position required by an autostereo display.Perceptual studies show that users experience a greater sensation of depth with our system compared to a typical 2D videoconferencing system.展开更多
This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory cap...This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.展开更多
文摘针对北斗2导航卫星之间通过星间链路进行距离测量和时间同步以实现星座自主导航功能,提出了一种动态环境下基于伪码高精度距离测量和时间同步技术。它根据狭义相对论中光速不变基本原理,扩展了静态环境下双向测距和时间同步(Two-Way Ranging and Time Transmit,TWRTT)技术,使之适用于北斗2导航卫星这样的动态环境之下。理论、仿真以及工程可实现性分析表明:利用该技术,北斗2导航卫星星间测距精度可达厘米级,时间同步精度优于1ns。
基金funded by the National Natural Science Foundation of China under grant No.50578125
文摘The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.
文摘A time domain prediction of wave-induced ship motions by a Rankine panel method is investigated. Linear boundary conditions on free surface and mean wetted body surface are adopted, while the numerical damping method is used for the radiation conditions. The motions of two ships in regular head waves are computed by the present method. The related numerical results are compared with the experiment data and those from linear strip theory. The comparison shows satisfactory agreements for pitch and heave transfer functions.
基金supported by National Natural Science Foundation of China (Grant No.10871103)
文摘In this paper, we consider the local time and the self-intersection local time for a bifractional Brownian motion, and the collision local time for two independent bifractional Brownian motions. We mainly prove the existence and smoothness of the self-intersection local time and the collision local time, through the strong local nondeterminism of bifractional Brownian motion, L2 convergence and Chaos expansion.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2007CB714600)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper,a CFD/CSD model coupling N-S equations and structural equations of motion in the time domain is described for aeroelastic analysis of large wind turbines.The structural modes of blades are analyzed with one-dimensional beam models.By combining point matched sliding grid for wind turbine rotation and deforming grid for structural vibrations,a hybrid dynamic grid strategy is designed for the multi-block structured grid system of a wind turbine.The dual time-stepping approach and finite volume scheme are applied to the three-dimensional unsteady preconditioned N-S equations,and DES approach is employed to simulate the unsteady massively separated flows.A modal approach is adopted to calculate the structural response,and a predictor-corrector scheme is used to solve the structural equations of motion.CFD and CSD solvers are tightly coupled via successive iterations within each physical time step.As a result,a time-domain CFD/CSD model for aeroelastic analysis of a large wind turbine is achieved.The presented method is applied to the NH1500 large wind turbine under the rated condition,and the calculated aeroelastic characteristics agree well with those of the prescribed vortex wake method.
基金the National Natural Science Foundation of China(No. 10471003).
文摘In this paper, the existence and smoothness of the collision local time are proved for two independent fractional Brownian motions, through L^2 convergence and Chaos expansion. Furthermore, the regularity of the collision local time process is studied.
基金supported by the National Hightech R&D Program of China (Project No. 2013AA013903)the National Natural Science Foundation of China (Project Nos. 61133008 and 61272226)+1 种基金Research Grant of Beijing Higher Institution Engineering Research Center, an EPSRC Travel Grantthe Research and Enterprise Investment Fund of Cardiff Metropolitan University
文摘We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary2 D display for output. The Kinect camera allows a 3D model of each participant to be transmitted;the(assumed static) background is sent separately.Furthermore, the Kinect tracks the receiver's head,allowing our system to render a view of the sender depending on the receiver's viewpoint. The resulting motion parallax gives the receivers a strong impression of 3D viewing as they move, yet the system only needs an ordinary 2D display. This is cheaper than a full3 D system, and avoids disadvantages such as the need to wear shutter glasses, VR headsets, or to sit in a particular position required by an autostereo display.Perceptual studies show that users experience a greater sensation of depth with our system compared to a typical 2D videoconferencing system.
基金the National Natural Science Foundation of China(No.60904066)
文摘This paper presents an adaptive path planner for unmanned aerial vehicles (UAVs) to adapt a real-time path search procedure to variations and fluctuations of UAVs’ relevant performances, with respect to sensory capability, maneuverability, and flight velocity limit. On the basis of a novel adaptability-involved problem statement, bi-level programming (BLP) and variable planning step techniques are introduced to model the necessary path planning components and then an adaptive path planner is developed for the purpose of adaptation and optimization. Additionally, both probabilistic-risk-based obstacle avoidance and performance limits are described as path search constraints to guarantee path safety and navigability. A discrete-search-based path planning solution, embedded with four optimization strategies, is especially designed for the planner to efficiently generate optimal flight paths in complex operational spaces, within which different surface-to-air missiles (SAMs) are deployed. Simulation results in challenging and stochastic scenarios firstly demonstrate the effectiveness and efficiency of the proposed planner, and then verify its great adaptability and relative stability when planning optimal paths for a UAV with changing or fluctuating performances.