The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly ...The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly investigated. The receiver used in this UWB system is a hybrid selection/maximal-ratio combining(H-S/MRC) diversity receiver in which L strongest multipath components out of N multipath diversity branches are selected and combined using maximal-ratio combining. The exact expressions for the bit error rate(BER) of this UWB system are firstly derived by using the virtual branch technique in term of PRF, the number of multipath components selected and combined L, and multipath spread of the channel and then this BER performance is evaluated. With the computer simulation for impulses having different pulse shapes, numerical results show that PRF, as well as pulse shape and the number of multipath diversity branches selected and combined L, has much effect on the BER performance of this UWB system in dense multipath fading environments. As PRF increases, the BER performance of this UWB system is much degraded under the conditions of fixed L and pulse shape.展开更多
文摘The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly investigated. The receiver used in this UWB system is a hybrid selection/maximal-ratio combining(H-S/MRC) diversity receiver in which L strongest multipath components out of N multipath diversity branches are selected and combined using maximal-ratio combining. The exact expressions for the bit error rate(BER) of this UWB system are firstly derived by using the virtual branch technique in term of PRF, the number of multipath components selected and combined L, and multipath spread of the channel and then this BER performance is evaluated. With the computer simulation for impulses having different pulse shapes, numerical results show that PRF, as well as pulse shape and the number of multipath diversity branches selected and combined L, has much effect on the BER performance of this UWB system in dense multipath fading environments. As PRF increases, the BER performance of this UWB system is much degraded under the conditions of fixed L and pulse shape.
文摘采用基于软判决和硬判决的方法,对跳时脉冲位置调制(time hopping-pulse position modulation,TH-PPM)和跳时脉冲幅度调制(time hopping-pulse amplitude modulation,TH-PAM)超宽带系统的误比特率性能进行了分析和比较.在加性高斯白噪声(additive white Gausses noise,AWGN)信道下,研究了TH-PPM和TH-PAM超宽带单用户系统接收端信号进行软判决和硬判决时的性能,同时分析比较系统在两种调制方式下采用不同脉冲重复次数时的性能差异.仿真结果表明,在AWGN信道下,TH-PPM和TH-PAM的系统性能均随脉冲重复次数的增加而明显改善,并且后者优于前者.此外,采用软判决时的系统性能优于采用硬判决时的系统性能.