文中提出一种基于插值互相关函数的GIS局部放电特高频时差定位方法。该方法对在较低采样频率下捕获的局部放电特高频信号首先进行三次样条插值处理,再对插值后信号进行互相关分析,以达到精确估计特高频信号时延的目的。该方法能够利用...文中提出一种基于插值互相关函数的GIS局部放电特高频时差定位方法。该方法对在较低采样频率下捕获的局部放电特高频信号首先进行三次样条插值处理,再对插值后信号进行互相关分析,以达到精确估计特高频信号时延的目的。该方法能够利用算法提升系统采样频率,从而提高弥补系统硬件的采样性能,同时减小由于信号时延与采样间隔非整数倍匹配所造成的时延估计误差。通过仿真试验分析两组特高频信号的时延,验证了该方法的可行性和有效性。应用该方法成功定位了一起220 k V GIS内部悬浮电位放电缺陷。仿真试验及应用结果表明,利用基于插值互相关函数的特高频时差定位方法,能够准确快速地进行时延估计,提高时延估计准确度27%以上。展开更多
A least-squares reverse-time migration scheme is presented for reflectivity imaging. Based on an accurate reflection modeling formula, this scheme produces amplitude-preserved stacked reflectivity images with zero pha...A least-squares reverse-time migration scheme is presented for reflectivity imaging. Based on an accurate reflection modeling formula, this scheme produces amplitude-preserved stacked reflectivity images with zero phase. Spatial preconditioning, weighting and the Barzilai-Borwein method are applied to speed up the convergence of the least-squares inversion. In addition, this scheme compensates the effect of ghost waves to broaden the bandwidth of the reflectivity images. Furthermore, roughness penalty constraint is used to regularize the inversion, which in turn stabilizes inversion and removes high-wavenumber artifacts and mitigates spatial aliasing. The examples of synthetic and field datasets demonstrate the scheme can generate zerophase reflectivity images with broader bandwidth, higher resolution, fewer artifacts and more reliable amplitudes than conventional reverse-time migration.展开更多
文摘文中提出一种基于插值互相关函数的GIS局部放电特高频时差定位方法。该方法对在较低采样频率下捕获的局部放电特高频信号首先进行三次样条插值处理,再对插值后信号进行互相关分析,以达到精确估计特高频信号时延的目的。该方法能够利用算法提升系统采样频率,从而提高弥补系统硬件的采样性能,同时减小由于信号时延与采样间隔非整数倍匹配所造成的时延估计误差。通过仿真试验分析两组特高频信号的时延,验证了该方法的可行性和有效性。应用该方法成功定位了一起220 k V GIS内部悬浮电位放电缺陷。仿真试验及应用结果表明,利用基于插值互相关函数的特高频时差定位方法,能够准确快速地进行时延估计,提高时延估计准确度27%以上。
基金partly supported by the National Naural Science Foundation of China(Grant No.41272099)the Science Foundation of China University of Petroleum,Beijing(Grant No.2462015YJRC012)
文摘A least-squares reverse-time migration scheme is presented for reflectivity imaging. Based on an accurate reflection modeling formula, this scheme produces amplitude-preserved stacked reflectivity images with zero phase. Spatial preconditioning, weighting and the Barzilai-Borwein method are applied to speed up the convergence of the least-squares inversion. In addition, this scheme compensates the effect of ghost waves to broaden the bandwidth of the reflectivity images. Furthermore, roughness penalty constraint is used to regularize the inversion, which in turn stabilizes inversion and removes high-wavenumber artifacts and mitigates spatial aliasing. The examples of synthetic and field datasets demonstrate the scheme can generate zerophase reflectivity images with broader bandwidth, higher resolution, fewer artifacts and more reliable amplitudes than conventional reverse-time migration.