Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal archi-tecture. In this study, we report mapping and characteriza-tion of a rice mutant defective in tiller angle....Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal archi-tecture. In this study, we report mapping and characteriza-tion of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a lazy phenotype at the mature stage. Genetic analysis indicates that this tiller- spreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.展开更多
Tiller angle, a very essential agronomic trait, is significant in rice breeding, especially in plant type breeding. A tiller anglo controlling 2 (tac2) mutant was obtained from a restorer line Jinhui 10 by ethyl met...Tiller angle, a very essential agronomic trait, is significant in rice breeding, especially in plant type breeding. A tiller anglo controlling 2 (tac2) mutant was obtained from a restorer line Jinhui 10 by ethyl methane sulphonate mutagenesis. The tac2 mutant displayed normal phenotype at the seedling stage and the tiller angle significantly increased at the tillering stage, A preliminary physiological research indicated that the mutant was sensitive to GA. Thus, it is speculated that TAC2 and TAC1 might control the tiller angle in the same way. Genetic analysis showed that the mutant trait was controlled by a major recessive gene and was located on chromosome 9 using SSR markers. The genetic distances between TAC2 and its nearest markers RM3320 and RM201 were 19.2 cM and 16,7 cM, respectively.展开更多
水稻分蘖角度是构建理想株型的关键因素,雄性不育株系是杂交水稻育种的重要种质资源。为进一步解析分蘖角度和花粉发育的调控机制,本研究通过农艺性状调查、育性检测、扫描和透射电镜观察等方法,比较野生型S40和经甲基磺酸乙酯(EMS)诱...水稻分蘖角度是构建理想株型的关键因素,雄性不育株系是杂交水稻育种的重要种质资源。为进一步解析分蘖角度和花粉发育的调控机制,本研究通过农艺性状调查、育性检测、扫描和透射电镜观察等方法,比较野生型S40和经甲基磺酸乙酯(EMS)诱变得到的散生雄性不育突变体lpms1(lazy and partially male sterile 1)的表型差异。结果表明,与野生型相比,lpms1突变体的分蘖角度增大,育性降低,并伴随株高、粒长、穗粒数、结实率和千粒重等重要性状不同程度降低。扫描和透射电镜观察到lpms1的成熟花粉粒表面皱缩、空瘪,内容物不充实,花粉壁异常。实时荧光定量PCR(q RT-PCR)结果显示,lpms1突变会引起花粉发育相关基因的表达发生差异。遗传分析结果表明,lpms1是单基因隐性突变。利用株型紧凑材料与lpms1杂交构建F_(2)群体,结合分离群体分组分析测序方法(BSA-seq)和图位克隆方法进行基因定位。最终,LPMS1基因定位于第5号染色体插入缺失(Indel)标记A3与A4之间298 kb的范围内,该区间有38个开放阅读框(ORFs),但无分蘖角度和花粉发育相关基因报道。LPMS1是新的分蘖角度和花粉发育基因,该基因突变会同时引起水稻分蘖角度增加、育性降低。本研究结果为水稻分蘖角度和花粉发育的调控机制研究以及水稻株型和育性改良种质的创制提供了新的遗传资源。展开更多
基金supposed by the State High-Tech Program(Grant No.J02-A-001)the National Natural Science Foundation of China(Grant No.30021002).
文摘Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal archi-tecture. In this study, we report mapping and characteriza-tion of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a lazy phenotype at the mature stage. Genetic analysis indicates that this tiller- spreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level.
基金supported by the Doctoral Fund of Ministry of Education of China (Grant No. 20070635005)Ministry of Major Science & Technology of Chongqing, China (Grant No. CSTC2007AA1019)
文摘Tiller angle, a very essential agronomic trait, is significant in rice breeding, especially in plant type breeding. A tiller anglo controlling 2 (tac2) mutant was obtained from a restorer line Jinhui 10 by ethyl methane sulphonate mutagenesis. The tac2 mutant displayed normal phenotype at the seedling stage and the tiller angle significantly increased at the tillering stage, A preliminary physiological research indicated that the mutant was sensitive to GA. Thus, it is speculated that TAC2 and TAC1 might control the tiller angle in the same way. Genetic analysis showed that the mutant trait was controlled by a major recessive gene and was located on chromosome 9 using SSR markers. The genetic distances between TAC2 and its nearest markers RM3320 and RM201 were 19.2 cM and 16,7 cM, respectively.
文摘水稻分蘖角度是构建理想株型的关键因素,雄性不育株系是杂交水稻育种的重要种质资源。为进一步解析分蘖角度和花粉发育的调控机制,本研究通过农艺性状调查、育性检测、扫描和透射电镜观察等方法,比较野生型S40和经甲基磺酸乙酯(EMS)诱变得到的散生雄性不育突变体lpms1(lazy and partially male sterile 1)的表型差异。结果表明,与野生型相比,lpms1突变体的分蘖角度增大,育性降低,并伴随株高、粒长、穗粒数、结实率和千粒重等重要性状不同程度降低。扫描和透射电镜观察到lpms1的成熟花粉粒表面皱缩、空瘪,内容物不充实,花粉壁异常。实时荧光定量PCR(q RT-PCR)结果显示,lpms1突变会引起花粉发育相关基因的表达发生差异。遗传分析结果表明,lpms1是单基因隐性突变。利用株型紧凑材料与lpms1杂交构建F_(2)群体,结合分离群体分组分析测序方法(BSA-seq)和图位克隆方法进行基因定位。最终,LPMS1基因定位于第5号染色体插入缺失(Indel)标记A3与A4之间298 kb的范围内,该区间有38个开放阅读框(ORFs),但无分蘖角度和花粉发育相关基因报道。LPMS1是新的分蘖角度和花粉发育基因,该基因突变会同时引起水稻分蘖角度增加、育性降低。本研究结果为水稻分蘖角度和花粉发育的调控机制研究以及水稻株型和育性改良种质的创制提供了新的遗传资源。