Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduct...Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduction zone to the south, is studied in order to i) identify its relationship with the mapped structure, ii)determine deformational mechanisms and iii) constrain the geometry of the fold and thrust belt in the lower crust. Through this, we aim to determine which are the structures that contribute to Andean construction, east of the Frontal Cordillera in Argentina and at the western Principal Cordillera in Chile. Data from a temporary local seismic network are reprocessed in order to achieve a precise location of hypocenters and, whenever possible, to build focal mechanisms. Results are interpreted and compared with previous seismic studies and structural models. Analyzed seismicity is grouped around the eastern front of Frontal Cordillera, with hypocenters mainly at depths of 25-40 km. Contrastingly, earthquakes in the Principal Cordillera to the west are located at the axial Andean sector and Chilean slope, with depths shallower than 15 km. Obtained focal mechanisms indicate mainly strike-slip displacements, left lateral at Frontal Cordillera and right lateral at Principal Cordillera. Based on these observations, new possible structural models are proposed, where seismogenic sources could be either associated with inherited basement structures from the Cuyania-Chilenia suture; or correspond to deep-blind thrusts linked with a deeper-than-previously-assumed decollement that could be shared between Frontal Cordillera and western Precordillera. This deeper decollement would coincide in turn with the one determined from receiver function analysis for the eastern Sierras Pampeanas in previous works, potentially implying a common decollement all through the fold and thrust belt configuration. Apart from this, a new interpretation of seismogenic structures in Principal Cordillera near the Argentina-Chile 展开更多
The Xu-Huai nappe extends from its northeastern end Taierzhuangin Shandong Province through Xuzhou in Jiangsu Province to Huaibei in Anhui Province. It has been found to be a complex one and contains two generations o...The Xu-Huai nappe extends from its northeastern end Taierzhuangin Shandong Province through Xuzhou in Jiangsu Province to Huaibei in Anhui Province. It has been found to be a complex one and contains two generations of folds, the earlier one of which presents itself as a recumbent or recline fold. Two kinds展开更多
A sandbox experiment model was designed to simulate how differences in rock strength and gravity between two blocks can influence the formation characteristics of thrusts. In the experiment the compression was from on...A sandbox experiment model was designed to simulate how differences in rock strength and gravity between two blocks can influence the formation characteristics of thrusts. In the experiment the compression was from one direction with basement shortening and the initial surfaces of the model were oblique. The results show that if the initial surface was horizontal or the slope angle was smaller than 7°, the compression induced two groups of thrusts with opposite dip orientations. If the slope angle of the initial surface was greater than 7°, the compression induced only one group of thrusts with a dip orientation contrary to the original compression direction. This result is similar to the actual section of a collision zone between two continental blocks. By applying stress analysis, rock strength is shown to be an important factor in deformation. As other boundary conditions are changeless, it is the change of gravitational potential energy that leads to different deformation styles.展开更多
The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential ...The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential investigations in this area are first considered to prepare an idea with respect to state-of-the-art.The insight proposed here is organized to present attitude cascade control approach including the low thrust in connection with the high thrust to be implemented,while the aforementioned Monte-Carlo based method is carried out to guarantee the approach performance.It is noted that the investigated outcomes are efficient to handle a class of space systems presented via the center of mass and the moments of inertial.And also a number of profiles for the thrust vector and the misalignments as the disturbances all vary in its span of nominal variations.The acquired results are finally analyzed in line with some well-known benchmarks to verify the approach efficiency.The key core of finding in the research is to propose a novel 3-axis control approach to deal with all the mentioned uncertainties of space systems under control,in a synchronous manner,as long as the appropriate models in the low-high thrusts are realized.展开更多
基金supported by"Proyecto Unidad Ejecutora IDEAN:Evolución geológica de los Andes y su impacto económico y ambiental"
文摘Crustal seismicity in northwestern Mendoza Province in Argentina, corresponding to the transition zone between the Chilean-Pampean flat subduction zone(26.5-33.5°S) and the Southern Central Andes normal subduction zone to the south, is studied in order to i) identify its relationship with the mapped structure, ii)determine deformational mechanisms and iii) constrain the geometry of the fold and thrust belt in the lower crust. Through this, we aim to determine which are the structures that contribute to Andean construction, east of the Frontal Cordillera in Argentina and at the western Principal Cordillera in Chile. Data from a temporary local seismic network are reprocessed in order to achieve a precise location of hypocenters and, whenever possible, to build focal mechanisms. Results are interpreted and compared with previous seismic studies and structural models. Analyzed seismicity is grouped around the eastern front of Frontal Cordillera, with hypocenters mainly at depths of 25-40 km. Contrastingly, earthquakes in the Principal Cordillera to the west are located at the axial Andean sector and Chilean slope, with depths shallower than 15 km. Obtained focal mechanisms indicate mainly strike-slip displacements, left lateral at Frontal Cordillera and right lateral at Principal Cordillera. Based on these observations, new possible structural models are proposed, where seismogenic sources could be either associated with inherited basement structures from the Cuyania-Chilenia suture; or correspond to deep-blind thrusts linked with a deeper-than-previously-assumed decollement that could be shared between Frontal Cordillera and western Precordillera. This deeper decollement would coincide in turn with the one determined from receiver function analysis for the eastern Sierras Pampeanas in previous works, potentially implying a common decollement all through the fold and thrust belt configuration. Apart from this, a new interpretation of seismogenic structures in Principal Cordillera near the Argentina-Chile
文摘The Xu-Huai nappe extends from its northeastern end Taierzhuangin Shandong Province through Xuzhou in Jiangsu Province to Huaibei in Anhui Province. It has been found to be a complex one and contains two generations of folds, the earlier one of which presents itself as a recumbent or recline fold. Two kinds
基金This paper is supported by the project IGCP411(3-3-02-24) .
文摘A sandbox experiment model was designed to simulate how differences in rock strength and gravity between two blocks can influence the formation characteristics of thrusts. In the experiment the compression was from one direction with basement shortening and the initial surfaces of the model were oblique. The results show that if the initial surface was horizontal or the slope angle was smaller than 7°, the compression induced two groups of thrusts with opposite dip orientations. If the slope angle of the initial surface was greater than 7°, the compression induced only one group of thrusts with a dip orientation contrary to the original compression direction. This result is similar to the actual section of a collision zone between two continental blocks. By applying stress analysis, rock strength is shown to be an important factor in deformation. As other boundary conditions are changeless, it is the change of gravitational potential energy that leads to different deformation styles.
文摘The present research relies on a cascade control approach through the Monte-Carlo based method in the presence of uncertainties to evaluate the performance of the real overactuated space systems.A number of potential investigations in this area are first considered to prepare an idea with respect to state-of-the-art.The insight proposed here is organized to present attitude cascade control approach including the low thrust in connection with the high thrust to be implemented,while the aforementioned Monte-Carlo based method is carried out to guarantee the approach performance.It is noted that the investigated outcomes are efficient to handle a class of space systems presented via the center of mass and the moments of inertial.And also a number of profiles for the thrust vector and the misalignments as the disturbances all vary in its span of nominal variations.The acquired results are finally analyzed in line with some well-known benchmarks to verify the approach efficiency.The key core of finding in the research is to propose a novel 3-axis control approach to deal with all the mentioned uncertainties of space systems under control,in a synchronous manner,as long as the appropriate models in the low-high thrusts are realized.