Intravascular thrombosis, a critical pathophysiological feature of many cardiovascular disorders, leads to the formation of life-threatening obstructive blood clots within the vessels. Rapid recanalization of occluded...Intravascular thrombosis, a critical pathophysiological feature of many cardiovascular disorders, leads to the formation of life-threatening obstructive blood clots within the vessels. Rapid recanalization of occluded vessels is essential for the patients' outcome, but the currently available systemic fibrinolytic therapy is associated with low efficacy and tremendous side effects. Additionally, many patients are ineligible for systemic thrombolytic therapy, either due to delayed admission to the hospital after symptom onset, or because of recent surgery, or bleeding. In order to improve the treatment efficacy and to limit the risk of hemorrhagic complications, both precise imaging of the affected vascular regions, and the localized application of fibrinolytic agents, are required. Recent years have brought about considerable advances in nanomedical approaches to thrombosis. Although these thrombustargeting imaging agents and nanotherapies are not yet implemented in humans, substantial amount of successful in vivo applications have been reported, including animal models of stroke, acute arterial thrombosis, and pulmonary embolism. It is evident that the future progress in diagnosis and treatment of thrombosis will be closely bound with the development of novel nanotechnology-based strategies. This Editorial focuses on the recently reported approaches, which hold a great promise for personalized, disease-targeted treatment and reduced side effects in the patients suffering from this life-threatening condition.展开更多
基金Supported by The EU"Nano Athero"project FP7-NMP-2012-LARGE-6-309820the DFG(CI 162/2-1,SPP1681)
文摘Intravascular thrombosis, a critical pathophysiological feature of many cardiovascular disorders, leads to the formation of life-threatening obstructive blood clots within the vessels. Rapid recanalization of occluded vessels is essential for the patients' outcome, but the currently available systemic fibrinolytic therapy is associated with low efficacy and tremendous side effects. Additionally, many patients are ineligible for systemic thrombolytic therapy, either due to delayed admission to the hospital after symptom onset, or because of recent surgery, or bleeding. In order to improve the treatment efficacy and to limit the risk of hemorrhagic complications, both precise imaging of the affected vascular regions, and the localized application of fibrinolytic agents, are required. Recent years have brought about considerable advances in nanomedical approaches to thrombosis. Although these thrombustargeting imaging agents and nanotherapies are not yet implemented in humans, substantial amount of successful in vivo applications have been reported, including animal models of stroke, acute arterial thrombosis, and pulmonary embolism. It is evident that the future progress in diagnosis and treatment of thrombosis will be closely bound with the development of novel nanotechnology-based strategies. This Editorial focuses on the recently reported approaches, which hold a great promise for personalized, disease-targeted treatment and reduced side effects in the patients suffering from this life-threatening condition.