This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state, which is much more valuable than a GHZ and W state for some applications in quantum information processing...This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state, which is much more valuable than a GHZ and W state for some applications in quantum information processing. In comparison with previous proposal of teleportation, the resources of entangled states as quantum channel and the number of classical messages required by our scheme can be cut down. Moreover, it is shown that there exists a class of transformations which ensure the success of this scheme, because the two-particle transformation performed by the receiver in the course of teleportation may be a generic two-particle operation instead of a control-NOT (CNOT) operation. In addition, all kinds of transformations performed by sender and receiver are given in detail.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
In this article, a protocol for the teleportation of an unknown two-panicle entanglement is proposed. The feature of the present protocol is that we utilize an asymmetric threeparticle entangled state as the quantum c...In this article, a protocol for the teleportation of an unknown two-panicle entanglement is proposed. The feature of the present protocol is that we utilize an asymmetric threeparticle entangled state as the quantum channel. The optimal discrimination between two nonorthogonal quantum states is adopted. It is shown that an unknown two-particle entangled state can be probabilistically teleported from the sender to the remote receiver on condition that the co-sender successfully collaborates. The fidelity in this protocol is one. In addition, the probability of the successful teleportation is calculated and all kinds of transformations performed by the sender and the receiver are provided in detail.展开更多
Recently Li et al. proposed special partially entangled states serving as quantum channel in quantum controlled teleportation, while there are some limitations in their scheme. Based on that, we present a possible imp...Recently Li et al. proposed special partially entangled states serving as quantum channel in quantum controlled teleportation, while there are some limitations in their scheme. Based on that, we present a possible improvement in this paper. We construct a novel three-particle partially entangled state which is suitable for perfect controlled teleportation. A simple quantum circuit is designed to obtain this state. We evaluate quantum controlled teleportation from three points of view: teleportation fidelity, success probability and the controller's power. Detailed calculations and simulation analyses show that the constructed state is a suitable channel for controlled teleportation of arbitrary qubits, unit teleportation fidelity and 100% success probability can be achieved. Meanwhile, as long as channel's entanglement degree equals to or greater than 3/4, the controller's power can be guaranteed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants No 60373059), the National Laboratory for Modern Communications Science Foundation of China (Grant No 51436020103DZ4001), the Major Research Plan of the National Natural Science Foundation of China (Grant No 90604023), the National Research Foundation for the Doctoral Program of Higher Education of China (Grant No 20040013007), and the ISN 0pen Foundation.
文摘This paper proposes a scheme for teleporting a kind of essential three-particle non-symmetric entangled state, which is much more valuable than a GHZ and W state for some applications in quantum information processing. In comparison with previous proposal of teleportation, the resources of entangled states as quantum channel and the number of classical messages required by our scheme can be cut down. Moreover, it is shown that there exists a class of transformations which ensure the success of this scheme, because the two-particle transformation performed by the receiver in the course of teleportation may be a generic two-particle operation instead of a control-NOT (CNOT) operation. In addition, all kinds of transformations performed by sender and receiver are given in detail.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
基金the Hi-Tech Research and Development Program of China(2006AA01Z419)the National Natural Science Foundation of China(90604023)+2 种基金the National Laboratory for Modem Communications Science Foundation of China(9140C1101010601)the Natural Science Foundation of Beijing(4072020)the ISN Open Foundation.
文摘In this article, a protocol for the teleportation of an unknown two-panicle entanglement is proposed. The feature of the present protocol is that we utilize an asymmetric threeparticle entangled state as the quantum channel. The optimal discrimination between two nonorthogonal quantum states is adopted. It is shown that an unknown two-particle entangled state can be probabilistically teleported from the sender to the remote receiver on condition that the co-sender successfully collaborates. The fidelity in this protocol is one. In addition, the probability of the successful teleportation is calculated and all kinds of transformations performed by the sender and the receiver are provided in detail.
基金supported by the National Natural Science Foundation of China (61372076, 61301171)the 111 Project (B08038)the Fundamental Research Funds for the Central Universities (K5051201021)
文摘Recently Li et al. proposed special partially entangled states serving as quantum channel in quantum controlled teleportation, while there are some limitations in their scheme. Based on that, we present a possible improvement in this paper. We construct a novel three-particle partially entangled state which is suitable for perfect controlled teleportation. A simple quantum circuit is designed to obtain this state. We evaluate quantum controlled teleportation from three points of view: teleportation fidelity, success probability and the controller's power. Detailed calculations and simulation analyses show that the constructed state is a suitable channel for controlled teleportation of arbitrary qubits, unit teleportation fidelity and 100% success probability can be achieved. Meanwhile, as long as channel's entanglement degree equals to or greater than 3/4, the controller's power can be guaranteed.