This paper discusses both the nonexistence of positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x, y) is superlinear in y at y = 0 and the existence of multiple pos...This paper discusses both the nonexistence of positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x, y) is superlinear in y at y = 0 and the existence of multiple positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x,y) is superlinear in x at +∞.展开更多
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in...In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.展开更多
We consider a three-point boundary value problem for operators such as the one-dimensional p-Laplacian, and show when they have solutions or not, and how many. The inverse operators are given by various formulas invol...We consider a three-point boundary value problem for operators such as the one-dimensional p-Laplacian, and show when they have solutions or not, and how many. The inverse operators are given by various formulas involving zeros of a real-valued function. They are shown to be orderpreserving, for some parameter values, and non-singleton valued for others. The operators are shown to be m-dissipative in the space of continuous functions.展开更多
基金Supported by the National Science Foundation of China(1147229811401574)+2 种基金the Fundamental Research Funds for the Central Universities(3122013K005)the National Science Foundation of Tianjin City(13JCQNJC04400)the Civil Aviation University of China Research Funds(2012KYM05)
基金Supported by the National Natural Science Foundation of China(No.10571111)the fund of Shandong Education Committee(J07WH08).
文摘This paper discusses both the nonexistence of positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x, y) is superlinear in y at y = 0 and the existence of multiple positive solutions for second-order three-point boundary value problems when the nonlinear term f(t, x,y) is superlinear in x at +∞.
基金Project supported by Foundation of Major Project of ScienceTechnology of Chinese Education Ministy,NSF of Education Committee of Jiangsu Province
文摘In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
文摘We consider a three-point boundary value problem for operators such as the one-dimensional p-Laplacian, and show when they have solutions or not, and how many. The inverse operators are given by various formulas involving zeros of a real-valued function. They are shown to be orderpreserving, for some parameter values, and non-singleton valued for others. The operators are shown to be m-dissipative in the space of continuous functions.