A new compressed-air engine system based on three-stage single screw expander was proposed to improve the performance of power system.Three different structure styles were presented,and the studies on the power perfor...A new compressed-air engine system based on three-stage single screw expander was proposed to improve the performance of power system.Three different structure styles were presented,and the studies on the power performance and the distribution of expansion ratios between stages were carried out by programming and mathematical modeling of each style.Research results indicated that the best matches of expansion ratios with equal heat temperature for the air tank of pressure 30 MPa were seven-five-three for"first-stage heating"style,eight-five-three for"two-stage heating"style and five-five-four for"three-stage heating"style,respectively.Results also showed that heating up inlet air or increasing the expander efficiency might improve the power performance.The output power of the"two-stage heating"style is far higher than that of"first-stage heating"style and is a little lower than that of"three-stage heating"style.The new system showed good structure and power performances.展开更多
We propose a model for a three-terminal quantum well heat engine with heat leakage. According to the Landauer formula, the expressions for the charge current, the heat current, the power output and the efficiency are ...We propose a model for a three-terminal quantum well heat engine with heat leakage. According to the Landauer formula, the expressions for the charge current, the heat current, the power output and the efficiency are derived in the linear-response regime. The curves of the power output and the efficiency versus the positions of energy levels and the bias voltage are plotted by numerical calculation. Moreover, we obtain the maximum power output and the corresponding efficiency, and analyze the influence of the heat leakage factor, the positions of energy levels and the bias voltage on these performance parameters.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50976004)
文摘A new compressed-air engine system based on three-stage single screw expander was proposed to improve the performance of power system.Three different structure styles were presented,and the studies on the power performance and the distribution of expansion ratios between stages were carried out by programming and mathematical modeling of each style.Research results indicated that the best matches of expansion ratios with equal heat temperature for the air tank of pressure 30 MPa were seven-five-three for"first-stage heating"style,eight-five-three for"two-stage heating"style and five-five-four for"three-stage heating"style,respectively.Results also showed that heating up inlet air or increasing the expander efficiency might improve the power performance.The output power of the"two-stage heating"style is far higher than that of"first-stage heating"style and is a little lower than that of"three-stage heating"style.The new system showed good structure and power performances.
基金Supported by the National Natural Science Foundation of China under Grant No 11365015
文摘We propose a model for a three-terminal quantum well heat engine with heat leakage. According to the Landauer formula, the expressions for the charge current, the heat current, the power output and the efficiency are derived in the linear-response regime. The curves of the power output and the efficiency versus the positions of energy levels and the bias voltage are plotted by numerical calculation. Moreover, we obtain the maximum power output and the corresponding efficiency, and analyze the influence of the heat leakage factor, the positions of energy levels and the bias voltage on these performance parameters.