Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, tran...Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with dis- eases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its ability to sequence full-length transcripts or fragments with significant lengths. Addition- ally, PacBio's sequencing technique provides information that is useful for the direct detection of base modifications, such as methylation. In addition to using PacBio sequencing alone, many hybrid sequencing strategies have been developed to make use of more accurate short reads in conjunction with PacBio long reads. In general, hybrid sequencing strategies are more affordable and scalable especially for small-size laboratories than using PacBio Sequencing alone. The advent of PacBio sequencing has made available much information that could not be obtained via SGS alone.展开更多
The revolution of genome sequencing is continuing after the successful secondgeneration sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is prog...The revolution of genome sequencing is continuing after the successful secondgeneration sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT). MiniON identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MiniON has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assem- bly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.展开更多
Single-cell omics sequencingwas first achieved for the transcriptome in 2009,whichwas followed by fast development of technologies for profiling the genome,DNA methylome,3D genome architecture,chromatin accessibility,...Single-cell omics sequencingwas first achieved for the transcriptome in 2009,whichwas followed by fast development of technologies for profiling the genome,DNA methylome,3D genome architecture,chromatin accessibility,histone modifications,etc.,in an individual cell.In this review we mainly focus on the recent progress in four topics in the single-cell omics field:single-cell epigenome sequencing,single-cell genome sequencing for lineage tracing,spatially resolved single-cell transcriptomics and third-generation sequencing platform-based single-cell omics sequencing.We also discuss the potential applications and future directions of these single-cell omics sequencing technologies for different biomedical systems,especially for the human stem cell field.展开更多
高通量测序技术的发展为研究者深入探索微生物世界提供可能。随着以Pacific Bio Sciences(PacBio)公司的单分子实时测序(Single molecule real time sequencing,SMRT)为代表的第三代测序(Third generation sequencing,TGS)技术逐渐发展...高通量测序技术的发展为研究者深入探索微生物世界提供可能。随着以Pacific Bio Sciences(PacBio)公司的单分子实时测序(Single molecule real time sequencing,SMRT)为代表的第三代测序(Third generation sequencing,TGS)技术逐渐发展成熟,微生物研究方法正面临又一次新的变革。SMRT测序技术凭借其特殊建库方式(SMRTbell)和超长的测序读长等特点,为微生物16S rRNA基因全长测序提供新的选择。同时,为组装完整可靠的宏基因组和微生物全基因组提供新方法。随着PacBio测序平台的成本大幅下降,SMRT测序技术的PacBio系列平台开始逐渐被应用于微生物16S rRNA基因测序、宏基因组测序和全基因组测序研究中。综述了SMRT测序技术的技术原理和特点及其在微生物16S rRNA基因全长测序、宏基因组测序等方面的应用,并分析了目前SMRT测序技术在微生物各方面研究中的优势和存在的问题,提出基于SMRT测序技术获得的长片段在后期分析中存在的问题。SMRT测序技术将越来越多地引入到微生物研究中,期望为将要选择使用SMRT测序技术研究微生物的研究人员提供一定参考。展开更多
The monkeypox virus(MPXV)has triggered a current outbreak globally.Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control.It is a significant challenge but necessary...The monkeypox virus(MPXV)has triggered a current outbreak globally.Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control.It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads,as it is one of the DNA viruses with the largest genome and the most AT-biased,and has a significant number of tandem repeats.Here we evaluated the performance of metagenomic and amplicon sequencing techniques,and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland.We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens.Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes.Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences.Besides,several intra-host single nucleotide variations were identified in the first imported mpox case.This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens.The findings of this study will significantly enhance the surveillance of MPXV.展开更多
BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditi...BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.展开更多
DNA barcodes,short and unique DNA sequences,play a crucial role in sample identification when processing many samples simultaneously,which helps reduce experimental costs.Nevertheless,the low quality of long-read sequ...DNA barcodes,short and unique DNA sequences,play a crucial role in sample identification when processing many samples simultaneously,which helps reduce experimental costs.Nevertheless,the low quality of long-read sequencing makes it difficult to identify barcodes accurately,which poses significant challenges for the design of barcodes for large numbers of samples in a single sequencing run.Here,we present a comprehensive study of the generation of barcodes and develop a tool,PRO,that can be used for selecting optimal barcode sets and demultiplexing.We formulate the barcode design problem as a combinatorial problem and prove that finding the optimal largest barcode set in a given DNA sequence space in which all sequences have the same length is theoretically NP-complete.For practical applications,we developed the novel method PRO by introducing the probability divergence between two DNA sequences to expand the capacity of barcode kits while ensuring demultiplexing accuracy.Specifically,the maximum size of the barcode kits designed by PRO is 2,292,which keeps the length of barcodes the same as that of the official ones used by Oxford Nanopore Technologies(ONT).We validated the performance of PRO on a simulated nanopore dataset with high error rates.The demultiplexing accuracy of PRO reached 98.29%for a barcode kit of size 2,922,4.31%higher than that of Guppy,the official demultiplexing tool.When the size of the barcode kit generated by PRO is the same as the official size provided by ONT,both tools show superior and comparable demultiplexing accuracy.展开更多
Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on ...Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.展开更多
基金supported by the institutional fund of the Department of Internal Medicine, University of Iowa, USA
文摘Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with dis- eases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its ability to sequence full-length transcripts or fragments with significant lengths. Addition- ally, PacBio's sequencing technique provides information that is useful for the direct detection of base modifications, such as methylation. In addition to using PacBio sequencing alone, many hybrid sequencing strategies have been developed to make use of more accurate short reads in conjunction with PacBio long reads. In general, hybrid sequencing strategies are more affordable and scalable especially for small-size laboratories than using PacBio Sequencing alone. The advent of PacBio sequencing has made available much information that could not be obtained via SGS alone.
基金supported by the Wellcome Trust,the United Kingdom
文摘The revolution of genome sequencing is continuing after the successful secondgeneration sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that promises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT). MiniON identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MiniON has thus generated much excitement and interest in the genomics community. While de novo genome assemblies can be cheaply produced from SGS data, assem- bly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in genome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2018YFA0107601).
文摘Single-cell omics sequencingwas first achieved for the transcriptome in 2009,whichwas followed by fast development of technologies for profiling the genome,DNA methylome,3D genome architecture,chromatin accessibility,histone modifications,etc.,in an individual cell.In this review we mainly focus on the recent progress in four topics in the single-cell omics field:single-cell epigenome sequencing,single-cell genome sequencing for lineage tracing,spatially resolved single-cell transcriptomics and third-generation sequencing platform-based single-cell omics sequencing.We also discuss the potential applications and future directions of these single-cell omics sequencing technologies for different biomedical systems,especially for the human stem cell field.
文摘高通量测序技术的发展为研究者深入探索微生物世界提供可能。随着以Pacific Bio Sciences(PacBio)公司的单分子实时测序(Single molecule real time sequencing,SMRT)为代表的第三代测序(Third generation sequencing,TGS)技术逐渐发展成熟,微生物研究方法正面临又一次新的变革。SMRT测序技术凭借其特殊建库方式(SMRTbell)和超长的测序读长等特点,为微生物16S rRNA基因全长测序提供新的选择。同时,为组装完整可靠的宏基因组和微生物全基因组提供新方法。随着PacBio测序平台的成本大幅下降,SMRT测序技术的PacBio系列平台开始逐渐被应用于微生物16S rRNA基因测序、宏基因组测序和全基因组测序研究中。综述了SMRT测序技术的技术原理和特点及其在微生物16S rRNA基因全长测序、宏基因组测序等方面的应用,并分析了目前SMRT测序技术在微生物各方面研究中的优势和存在的问题,提出基于SMRT测序技术获得的长片段在后期分析中存在的问题。SMRT测序技术将越来越多地引入到微生物研究中,期望为将要选择使用SMRT测序技术研究微生物的研究人员提供一定参考。
基金supported by the National Key Research and Development Program of China(2022YFC2303401,2022YFC2304100,2016YFD0500301,2021YFC0863300)the Beijing Science and Technology Plan(Z211100002521017)the National Natural Science Foundation of China(82241080)。
文摘The monkeypox virus(MPXV)has triggered a current outbreak globally.Genome sequencing of MPXV and rapid tracing of genetic variants will benefit disease diagnosis and control.It is a significant challenge but necessary to optimize the strategy and application of rapid full-length genome identification and to track variations of MPXV in clinical specimens with low viral loads,as it is one of the DNA viruses with the largest genome and the most AT-biased,and has a significant number of tandem repeats.Here we evaluated the performance of metagenomic and amplicon sequencing techniques,and three sequencing platforms in MPXV genome sequencing based on multiple clinical specimens of five mpox cases in Chinese mainland.We rapidly identified the full-length genome of MPXV with the assembly of accurate tandem repeats in multiple clinical specimens.Amplicon sequencing enables cost-effective and rapid sequencing of clinical specimens to obtain high-quality MPXV genomes.Third-generation sequencing facilitates the assembly of the terminal tandem repeat regions in the monkeypox virus genome and corrects a common misassembly in published sequences.Besides,several intra-host single nucleotide variations were identified in the first imported mpox case.This study offers an evaluation of various strategies aimed at identifying the complete genome of MPXV in clinical specimens.The findings of this study will significantly enhance the surveillance of MPXV.
基金Supported by Research and Development Funding for Medical and Health Institutions,No.2021YL007.
文摘BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
文摘DNA barcodes,short and unique DNA sequences,play a crucial role in sample identification when processing many samples simultaneously,which helps reduce experimental costs.Nevertheless,the low quality of long-read sequencing makes it difficult to identify barcodes accurately,which poses significant challenges for the design of barcodes for large numbers of samples in a single sequencing run.Here,we present a comprehensive study of the generation of barcodes and develop a tool,PRO,that can be used for selecting optimal barcode sets and demultiplexing.We formulate the barcode design problem as a combinatorial problem and prove that finding the optimal largest barcode set in a given DNA sequence space in which all sequences have the same length is theoretically NP-complete.For practical applications,we developed the novel method PRO by introducing the probability divergence between two DNA sequences to expand the capacity of barcode kits while ensuring demultiplexing accuracy.Specifically,the maximum size of the barcode kits designed by PRO is 2,292,which keeps the length of barcodes the same as that of the official ones used by Oxford Nanopore Technologies(ONT).We validated the performance of PRO on a simulated nanopore dataset with high error rates.The demultiplexing accuracy of PRO reached 98.29%for a barcode kit of size 2,922,4.31%higher than that of Guppy,the official demultiplexing tool.When the size of the barcode kit generated by PRO is the same as the official size provided by ONT,both tools show superior and comparable demultiplexing accuracy.
文摘Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.