With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and f...With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.展开更多
The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical (anal...The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical (analysis) and experiment. Influencing factors of the mandrel include the count of mandrel heads, the diameter of mandrel and its position. According to the principle of NC tube bending, quality defects possibly produced in thin-walled tube NC bending process were analyzed and two parameters were proposed in order to describe the cross section quality of thin-walled tube NC bending. According to the geometrical dimension of tube and dies, the range of mandrel protrusion was derived. The finite element model of thin-walled tube NC bending was established based on the DYNAFORM platform, and key technological problems were solved. The model was verified by experiment. The effect of the number of mandrel heads, the diameter of mandrel and the protrusion length of mandrel on the cross section quality of thin-walled tube NC bending was revealed and how to choose mandrel parameters was presented.展开更多
The effect of frictions between dies and tube on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical analysis and experi...The effect of frictions between dies and tube on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical analysis and experiment. The results show that the frictions between mandrel, wiper, pressure die, bending die and tube have a significant and complicate effect on the section quality of thin-walled tube NC bending. To improve the section quality, frictions between mandrel, wiper and tube should be decreased, but the frictions between the pressure die, bending die and tube increase. The effect on the section distortion is more significant from mandrel, wiper, pressure die to bending die and the effect on the wall thinning more significant from mandrel, pressure die, wiper, to bending die. The effects of frictions between all dies and tube on wall thinning are smaller than their effects on section distortion. Mandrel and wiper should be lubricated well and drawing oil is used to lubricate them in actual production. The frictions between pressure die, bending die and tube should be increased and the dry friction is used between pressure die, bending die and tube in actual production.展开更多
为了将薄壁管数控弯曲中积累的宝贵数据、经验知识进行充分共享和重用,文章采用面向对象的C#语言,基于Visual Studio.NET前台开发环境,SQL Server 2000后台数据库,研究开发了薄壁弯管数据库管理系统TUBE。TUBE中存储了大量经模拟和实...为了将薄壁管数控弯曲中积累的宝贵数据、经验知识进行充分共享和重用,文章采用面向对象的C#语言,基于Visual Studio.NET前台开发环境,SQL Server 2000后台数据库,研究开发了薄壁弯管数据库管理系统TUBE。TUBE中存储了大量经模拟和实验优化过的薄壁弯管工艺参数及成形结果;该系统中实现了对这些参数的查询、添加、修改、删除等基本功能,特别还能针对查询不到的记录,可以根据成形极限判断准则,结合已有成形参数及缺陷知识进行管子的预成形设计,再将预成形结果扩充到TUBE中,为实践提供快速、有效的指导。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 59975076, 50175092, 50905144)the National Science Found of China for Distinguished Young Scholars (Grant No. 50225518)
文摘With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.
文摘The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical (analysis) and experiment. Influencing factors of the mandrel include the count of mandrel heads, the diameter of mandrel and its position. According to the principle of NC tube bending, quality defects possibly produced in thin-walled tube NC bending process were analyzed and two parameters were proposed in order to describe the cross section quality of thin-walled tube NC bending. According to the geometrical dimension of tube and dies, the range of mandrel protrusion was derived. The finite element model of thin-walled tube NC bending was established based on the DYNAFORM platform, and key technological problems were solved. The model was verified by experiment. The effect of the number of mandrel heads, the diameter of mandrel and the protrusion length of mandrel on the cross section quality of thin-walled tube NC bending was revealed and how to choose mandrel parameters was presented.
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young Scholars Projects(50175092+4 种基金 59975076) supported by the National Natural Science Foundation of China Project supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, China Project(04H53057) supported by the Aeronautical Science Foundation of China Project(20020699002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China Project(Z200518) supported by the Graduate Starting Seed Fund of Northwestern Polytechnical University, China
文摘The effect of frictions between dies and tube on the cross section quality of thin-walled tube numerical controlled(NC) bending was studied by numerical simulation method, combined with theoretical analysis and experiment. The results show that the frictions between mandrel, wiper, pressure die, bending die and tube have a significant and complicate effect on the section quality of thin-walled tube NC bending. To improve the section quality, frictions between mandrel, wiper and tube should be decreased, but the frictions between the pressure die, bending die and tube increase. The effect on the section distortion is more significant from mandrel, wiper, pressure die to bending die and the effect on the wall thinning more significant from mandrel, pressure die, wiper, to bending die. The effects of frictions between all dies and tube on wall thinning are smaller than their effects on section distortion. Mandrel and wiper should be lubricated well and drawing oil is used to lubricate them in actual production. The frictions between pressure die, bending die and tube should be increased and the dry friction is used between pressure die, bending die and tube in actual production.
文摘为了将薄壁管数控弯曲中积累的宝贵数据、经验知识进行充分共享和重用,文章采用面向对象的C#语言,基于Visual Studio.NET前台开发环境,SQL Server 2000后台数据库,研究开发了薄壁弯管数据库管理系统TUBE。TUBE中存储了大量经模拟和实验优化过的薄壁弯管工艺参数及成形结果;该系统中实现了对这些参数的查询、添加、修改、删除等基本功能,特别还能针对查询不到的记录,可以根据成形极限判断准则,结合已有成形参数及缺陷知识进行管子的预成形设计,再将预成形结果扩充到TUBE中,为实践提供快速、有效的指导。