Manufacturing of composite materials is usually accompanied with residual stresses.These stresses should be evaluated and assessed.To this end,a micromechanical model for periodic material whose temperature dependent ...Manufacturing of composite materials is usually accompanied with residual stresses.These stresses should be evaluated and assessed.To this end,a micromechanical model for periodic material whose temperature dependent constituents behave as thermorheologically complex materials(TCM)has been developed.This model,referred as the high fidelity generalized method of cells(HFGMC),takes into account the detailed interaction between the fiber and resin,their volume ratios,the fibers distribution and their waviness.This model is linked,in conjunction with a special UMAT subroutine,to the ABAQUS finite element code for prediction of the response of thermoviscoelastic composite structures during cool down process.The present investigation shows the effect of the cool down rate on the residual stress developed in the composite cylindrical structures.展开更多
文摘Manufacturing of composite materials is usually accompanied with residual stresses.These stresses should be evaluated and assessed.To this end,a micromechanical model for periodic material whose temperature dependent constituents behave as thermorheologically complex materials(TCM)has been developed.This model,referred as the high fidelity generalized method of cells(HFGMC),takes into account the detailed interaction between the fiber and resin,their volume ratios,the fibers distribution and their waviness.This model is linked,in conjunction with a special UMAT subroutine,to the ABAQUS finite element code for prediction of the response of thermoviscoelastic composite structures during cool down process.The present investigation shows the effect of the cool down rate on the residual stress developed in the composite cylindrical structures.