为了解决用户负荷需求在时间上的变动和传统冷热电联供(Combine Cooling,Heating&Power,CCHP)系统大部分时间处于非设计工况下运行导致系统的能源利用效率较低的问题,提出了一种耦合压缩空气储能系统(Compressed Air Energy Storage...为了解决用户负荷需求在时间上的变动和传统冷热电联供(Combine Cooling,Heating&Power,CCHP)系统大部分时间处于非设计工况下运行导致系统的能源利用效率较低的问题,提出了一种耦合压缩空气储能系统(Compressed Air Energy Storage system,CAES)和蓄热装置的新型CCHP系统(CAES based CCHP system,CAES-CCHP),建立系统的热力学模型,在给定的充、放电工作条件下对CAES-CCHP系统的热力学性能进行分析,并对影响该系统性能的CAES压气机压缩比、透平进气口压力、流经CAES的烟气质量流量3个关键参数进行敏感性分析。研究结果表明:CAES-CCHP系统能实现冷热电灵活调控,且系统的CAES功转换效率为57.41%,一次能源利用率、一次节能率及火用效率分别为76.22%,24.84%和31.97%,比传统的CCHP系统分别提高10.97%,18.15%和7.58%。展开更多
文摘为了解决用户负荷需求在时间上的变动和传统冷热电联供(Combine Cooling,Heating&Power,CCHP)系统大部分时间处于非设计工况下运行导致系统的能源利用效率较低的问题,提出了一种耦合压缩空气储能系统(Compressed Air Energy Storage system,CAES)和蓄热装置的新型CCHP系统(CAES based CCHP system,CAES-CCHP),建立系统的热力学模型,在给定的充、放电工作条件下对CAES-CCHP系统的热力学性能进行分析,并对影响该系统性能的CAES压气机压缩比、透平进气口压力、流经CAES的烟气质量流量3个关键参数进行敏感性分析。研究结果表明:CAES-CCHP系统能实现冷热电灵活调控,且系统的CAES功转换效率为57.41%,一次能源利用率、一次节能率及火用效率分别为76.22%,24.84%和31.97%,比传统的CCHP系统分别提高10.97%,18.15%和7.58%。