With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation...A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void are described, which gives some insight into the reliability of the interconnect under combined thermal and mechanical loads.展开更多
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock t...Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock temperature, mining operations and climatic conditions. A breakdown of the various heat sources is outlined, for an underground mine producing 3500 tonnes per day of broken rock, taking into consideration the latent and sensible portions of that heat to properly assess the wet bulb global temperature. The resulting thermal loads indicate that cooling efforts would be needed both at surface and underground to maintain the temperature underground within the legal threshold. In winter the air might also have to be heated at surface and cooled underground, to ensure that icing does not occur in the inlet ventilation shaft-the main reason why coolin~ cannot be focussed solely at surface.展开更多
In a fusion reactor,plasma-facing tungsten(W)materials inevitably suffer severe thermal shock,and the performance of W materials under repetitive high heat loads is one of the key concerns for long-term stable operati...In a fusion reactor,plasma-facing tungsten(W)materials inevitably suffer severe thermal shock,and the performance of W materials under repetitive high heat loads is one of the key concerns for long-term stable operation of the reactor.In this work,the microstructural evolution and thermal fatigue resistance of two representative W-0.5 wt.%ZrC(WZC)and W-1.0 wt.% Y_(2)O_(3)(WYO)composites were investigated under cyclic heat loads.Due to the intrinsic properties of ZrC and Y_(2)O_(3)particles such as coefficients of thermal expansion,particle size and distributions in W grains,the WZC composite exhibited a better thermal shock resistance than WYO.After thermal loads with the absorbed power density(APD)≥22 MW/m^(2),WYO showed obvious grain growth,Y_(2)O_(3)particles shedding and degradation of mechanical properties.While,in the case of WZC,these damage behaviors only occurred when APD≥25 MW/m^(2).Furthermore,an interesting crack mechanism in W composites was revealed due to interface debonding and progressive shedding of second-phase particles from the W matrix.The microstructures and tensile properties of the thermally loaded WZC and WYO specimens were also investigated and the correlations between the microstructure evolution and performance degradation are demonstrated.The results are useful for evaluating the thermal fatigue resistance of oxide/carbide dispersion strengthened W composites and their application in future fusion reactors.展开更多
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed h...Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed herein include mechanical and natural cooling systems, ranging from mechanical chillers to seasonal thermal storages. The economic and operating parameters for each technology were estimated and evaluated according to the mine's energy loads. Including consideration of any combined heat and power benefits of the technology, cooling tower requirements, etc., the resulting cost of implementation for each technology could be ranked. This showed that the natural thermal storage systems and conventional chillers were the most cost-effective, mainly since the natural systems had very low operating cost and the chillers had relatively low capital costs.展开更多
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
基金the National Natural Science Foundation of China(Nos.10602034,10572088)
文摘A model for the morphological evolution of a void under thermal and mechanical loads is established, and the thermodynamics potential of the model is given based on energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void are described, which gives some insight into the reliability of the interconnect under combined thermal and mechanical loads.
基金CEMI (Centre for Excellence in Mining Innovation) for their funding to support this research
文摘Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock temperature, mining operations and climatic conditions. A breakdown of the various heat sources is outlined, for an underground mine producing 3500 tonnes per day of broken rock, taking into consideration the latent and sensible portions of that heat to properly assess the wet bulb global temperature. The resulting thermal loads indicate that cooling efforts would be needed both at surface and underground to maintain the temperature underground within the legal threshold. In winter the air might also have to be heated at surface and cooled underground, to ensure that icing does not occur in the inlet ventilation shaft-the main reason why coolin~ cannot be focussed solely at surface.
基金supported by the National Key Research and Development Program of China(Nos.2019YFE03110200,2017YFE0302400,and 2019YFE03120001)the National Natural Science Foundation of China(Nos.11735015,52171084,52173303,U1967211)+1 种基金Anhui Provincial Natural Science Foundation(No.1908085J17)the HFIPS Director’s Fund(Nos.YZJJZX202012,YZJJ202206-CX,BJPY2021A05).
文摘In a fusion reactor,plasma-facing tungsten(W)materials inevitably suffer severe thermal shock,and the performance of W materials under repetitive high heat loads is one of the key concerns for long-term stable operation of the reactor.In this work,the microstructural evolution and thermal fatigue resistance of two representative W-0.5 wt.%ZrC(WZC)and W-1.0 wt.% Y_(2)O_(3)(WYO)composites were investigated under cyclic heat loads.Due to the intrinsic properties of ZrC and Y_(2)O_(3)particles such as coefficients of thermal expansion,particle size and distributions in W grains,the WZC composite exhibited a better thermal shock resistance than WYO.After thermal loads with the absorbed power density(APD)≥22 MW/m^(2),WYO showed obvious grain growth,Y_(2)O_(3)particles shedding and degradation of mechanical properties.While,in the case of WZC,these damage behaviors only occurred when APD≥25 MW/m^(2).Furthermore,an interesting crack mechanism in W composites was revealed due to interface debonding and progressive shedding of second-phase particles from the W matrix.The microstructures and tensile properties of the thermally loaded WZC and WYO specimens were also investigated and the correlations between the microstructure evolution and performance degradation are demonstrated.The results are useful for evaluating the thermal fatigue resistance of oxide/carbide dispersion strengthened W composites and their application in future fusion reactors.
基金CEMI (Centre for Excellence in Mining Innovation) for their funding to support this research
文摘Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed herein include mechanical and natural cooling systems, ranging from mechanical chillers to seasonal thermal storages. The economic and operating parameters for each technology were estimated and evaluated according to the mine's energy loads. Including consideration of any combined heat and power benefits of the technology, cooling tower requirements, etc., the resulting cost of implementation for each technology could be ranked. This showed that the natural thermal storage systems and conventional chillers were the most cost-effective, mainly since the natural systems had very low operating cost and the chillers had relatively low capital costs.