To investigate the feasibility of detoxifying chromium slag by sewage sludge, synthetic chromium slag containing 3% of Cr(Ⅵ) was mixed with sewage sludge followed by thermal treatment in nitrogen gas for stabilizin...To investigate the feasibility of detoxifying chromium slag by sewage sludge, synthetic chromium slag containing 3% of Cr(Ⅵ) was mixed with sewage sludge followed by thermal treatment in nitrogen gas for stabilizing chromium. The effects of slag to sludge ratio (0.5, 1 and 2) and temperature (200, 300, 500, 700 and 900℃) on treatment efficiency were investigated. During the mixing process before thermal treatment, 59.8%-99.7% of Cr(Ⅵ) was reduced, but Cr could be easily leached from the reduction product. Increasing heating temperature and decreasing slag to sludge ratio strengthened the reduction and stabilization of Cr(Ⅵ). When the slag to sludge ratio was 0.5 and thermal treatment temperature was 300℃, the total leached Cr and Cr(Ⅵ) declined to 0.55 mg/L and 0.17 mg/L respectively, and 45.5% of Cr in the thermally treated residue existed as residual fraction. A two-stage mechanism was proposed for the reduction and stabilization of Cr.展开更多
The phosphors of (Bi1- x Smx ) 2ZnB2O7 ( x = 0. 01, 0. 03, 0. 05, 0. 07, and 0. 09) were synthesized by conventional solid state reaction. The purity of all samples was checked by X-ray powder diffraction (XRD)....The phosphors of (Bi1- x Smx ) 2ZnB2O7 ( x = 0. 01, 0. 03, 0. 05, 0. 07, and 0. 09) were synthesized by conventional solid state reaction. The purity of all samples was checked by X-ray powder diffraction (XRD). XRD analysis shows that all these compounds are of a single phase of Bi2ZnB2O7, indicating that the Bi^3+ in Bi2ZnB2O7 can be partly replaced by the Sm^3+ without the change of crystal structure. The excitation and emission spectra at room temperature show the typical 4f-4f transitions of Sm^3+ . The dominant excitation line is around 404 nm due to ^6H5/2→^4K11/2 and the emission spectrum consists of a series of lines at 563, 599, 646, and 704 nm due to ^4G5/2→^6H5/2, ^6H7/2, ^6H9/2, and ^6H11/2, respectively. The optimal concentration of Sm^3+ in Bi2ZnB2O7 is about 3mol% (relative to lmol Bi^3+ ) and the critical distance Rc was calculated as 2.1 nm. The temperature dependence of the emission intensity of Bi1.94Sm0.06ZnB2O7 was examined in the temperature range between 100 and 450 K. The quenching temperature where the intensity has dropped to half of the initial intensity is 280 K. The lifetime for Sm^3+ in Bi1.94Sm0.06ZnB2O7 is fitted as a value of 0.29 and 1.03 ms.展开更多
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
基金supported by the National High-Tech Research and Development Program (863) of China(No. 2007AA061300)the International Cooperation Project of Science and Technology Commission of Shanghai Municipality (No. 08230707000)
文摘To investigate the feasibility of detoxifying chromium slag by sewage sludge, synthetic chromium slag containing 3% of Cr(Ⅵ) was mixed with sewage sludge followed by thermal treatment in nitrogen gas for stabilizing chromium. The effects of slag to sludge ratio (0.5, 1 and 2) and temperature (200, 300, 500, 700 and 900℃) on treatment efficiency were investigated. During the mixing process before thermal treatment, 59.8%-99.7% of Cr(Ⅵ) was reduced, but Cr could be easily leached from the reduction product. Increasing heating temperature and decreasing slag to sludge ratio strengthened the reduction and stabilization of Cr(Ⅵ). When the slag to sludge ratio was 0.5 and thermal treatment temperature was 300℃, the total leached Cr and Cr(Ⅵ) declined to 0.55 mg/L and 0.17 mg/L respectively, and 45.5% of Cr in the thermally treated residue existed as residual fraction. A two-stage mechanism was proposed for the reduction and stabilization of Cr.
基金Project supported by the National Natural Science Foundation of China (20501023) and the Guangdong Provincial NaturalScience Foundation (5300527)
文摘The phosphors of (Bi1- x Smx ) 2ZnB2O7 ( x = 0. 01, 0. 03, 0. 05, 0. 07, and 0. 09) were synthesized by conventional solid state reaction. The purity of all samples was checked by X-ray powder diffraction (XRD). XRD analysis shows that all these compounds are of a single phase of Bi2ZnB2O7, indicating that the Bi^3+ in Bi2ZnB2O7 can be partly replaced by the Sm^3+ without the change of crystal structure. The excitation and emission spectra at room temperature show the typical 4f-4f transitions of Sm^3+ . The dominant excitation line is around 404 nm due to ^6H5/2→^4K11/2 and the emission spectrum consists of a series of lines at 563, 599, 646, and 704 nm due to ^4G5/2→^6H5/2, ^6H7/2, ^6H9/2, and ^6H11/2, respectively. The optimal concentration of Sm^3+ in Bi2ZnB2O7 is about 3mol% (relative to lmol Bi^3+ ) and the critical distance Rc was calculated as 2.1 nm. The temperature dependence of the emission intensity of Bi1.94Sm0.06ZnB2O7 was examined in the temperature range between 100 and 450 K. The quenching temperature where the intensity has dropped to half of the initial intensity is 280 K. The lifetime for Sm^3+ in Bi1.94Sm0.06ZnB2O7 is fitted as a value of 0.29 and 1.03 ms.
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.