The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferr...The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces obtained by this model include not only the body magnetic force which is the same as that got from the magnetic dipole model, but also a distribution of the magnetic traction on the surface of the magnetizable body. And the value of the traction is equal to the jumping one of the Faraday electromagnetic stress on the two sides of the surface, which does not appear in any model, such as magnetic dipole model and axiomatic model.展开更多
With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoe...With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.展开更多
The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broa...The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broad variety of other results. Specifically, a corollary of the present model proposes a possible mechanism underlying the formation of magnetic monopoles and allows estimating their formation energy in order of magnitude.展开更多
High-entropy oxides(HEOs),with their multi-principal-element compositional diversity,have emerged as promising candidates in the realm of energy materials.This review encapsulates the progress in harnessing HEOs for e...High-entropy oxides(HEOs),with their multi-principal-element compositional diversity,have emerged as promising candidates in the realm of energy materials.This review encapsulates the progress in harnessing HEOs for energy conversion and storage applications,encompassing solar cells,electrocatalysis,photocatalysis,lithium-ion batteries,and solid oxide fuel cells.The critical role of theoretical calculations and simulations is underscored,highlighting their contribution to elucidating material stability,deciphering structure-activity relationships,and enabling performance optimization.These computational tools have been instrumental in multi-scale modeling,high-throughput screening,and integrating artificial intelligence for material design.Despite their promise,challenges such as fabrication complexity,cost,and theoretical computational hurdles impede the broad application of HEOs.To address these,this review delineates future research perspectives.These include the innovation of cost-effective synthesis strategies,employment of in situ characterization for micro-chemical insights,exploration of unique physical phenomena to refine performance,and enhancement of computational models for precise structure-performance predictions.This review calls for interdisciplinary synergy,fostering a collaborative approach between materials science,chemistry,physics,and related disciplines.Collectively,these efforts are poised to propel HEOs towards commercial viability in the new energy technologies,heralding innovative solutions to pressing energy and environmental challenges.展开更多
Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the susta...Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 19572031)the National Science Fundation for Outstanding Young Scientiests in Chinaa united foundation of the State Education Committee of China and National Natural
文摘The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces obtained by this model include not only the body magnetic force which is the same as that got from the magnetic dipole model, but also a distribution of the magnetic traction on the surface of the magnetizable body. And the value of the traction is equal to the jumping one of the Faraday electromagnetic stress on the two sides of the surface, which does not appear in any model, such as magnetic dipole model and axiomatic model.
基金National Natural Science Foundation of China (10972 102)Research Fund for the Doctoral Program of Higher Education of China (200802870007)Technology Research and Development Program of Jiangsu Province (BE2009163)
文摘With the aim to enhance the energy conversion efficiency of the rainbow shape piezoelectric transducer, an analysis model of energy conversion efficiency is established based on the elastic mechanics theory and piezoelectricity theory. It can be found that the energy conversion efficiency of the rainbow shape piezoelectric transducer mainly depends on its shape parameters and ma- terial properties from the analysis model. Simulation results show that there is an optimal length ratio to generate maximum en- ergy conversion efficiency and the optimal length ratios and energy conversion efficiencies of beryllium bronze substrate trans- ducer and steel substrate transducer are (0.65, 2.21%) and (0.65, 1.64%) respectively. The optimal thickness ratios and energy conversion efficieneies of beryllium bronze substrate transducer and steel substrate transducer are (1.16, 2.56%) and (1.49, 1.57%) respectively. With the increase of width ratio and initial curvature radius, both the energy conversion efficiencies de- crease. Moreover, beryllium bronze flexible substrate transducer is superior to the steel flexible substrate transducer.
文摘The manuscript introduces an “ab initio” quantum model to deduce the Maxwell equations. After general considerations and laying out the model’s theoretical framework, these equations can be derived alongside a broad variety of other results. Specifically, a corollary of the present model proposes a possible mechanism underlying the formation of magnetic monopoles and allows estimating their formation energy in order of magnitude.
基金financial support from the Key Research and Development Program of Yunnan Province(Grant No.202302AF080002)。
文摘High-entropy oxides(HEOs),with their multi-principal-element compositional diversity,have emerged as promising candidates in the realm of energy materials.This review encapsulates the progress in harnessing HEOs for energy conversion and storage applications,encompassing solar cells,electrocatalysis,photocatalysis,lithium-ion batteries,and solid oxide fuel cells.The critical role of theoretical calculations and simulations is underscored,highlighting their contribution to elucidating material stability,deciphering structure-activity relationships,and enabling performance optimization.These computational tools have been instrumental in multi-scale modeling,high-throughput screening,and integrating artificial intelligence for material design.Despite their promise,challenges such as fabrication complexity,cost,and theoretical computational hurdles impede the broad application of HEOs.To address these,this review delineates future research perspectives.These include the innovation of cost-effective synthesis strategies,employment of in situ characterization for micro-chemical insights,exploration of unique physical phenomena to refine performance,and enhancement of computational models for precise structure-performance predictions.This review calls for interdisciplinary synergy,fostering a collaborative approach between materials science,chemistry,physics,and related disciplines.Collectively,these efforts are poised to propel HEOs towards commercial viability in the new energy technologies,heralding innovative solutions to pressing energy and environmental challenges.
基金financial support from the National Natural Science Foundation of China(21878192 and 51904193)the Fundamental Research Funds for the Central Universities(YJ2021141)the Science and Technology Cooperation Special Fund of Sichuan University and Zigong City(2021CDZG-14)
文摘Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).