阿根廷滑柔鱼(Illex argentinus)是西南大西洋鱿钓渔业的主要作业鱼种,对资源丰度进行准确的预测可指导企业合理安排渔业生产。因此,本研究根据2000-2016年我国西南大西洋阿根廷滑柔鱼的生产数据,以单位捕捞努力量的渔获量(Catch per un...阿根廷滑柔鱼(Illex argentinus)是西南大西洋鱿钓渔业的主要作业鱼种,对资源丰度进行准确的预测可指导企业合理安排渔业生产。因此,本研究根据2000-2016年我国西南大西洋阿根廷滑柔鱼的生产数据,以单位捕捞努力量的渔获量(Catch per unit effort, CPUE)为阿根廷滑柔鱼资源丰度的指标,利用灰色绝对关联分析和灰色预测建模的方法(GM(0,N)),计算2001-2015年CPUE的时间序列值与产卵期(6-8月)产卵场海表面温度(Sea surface temperature, SST)时间序列值的灰色绝对关联度,选取产卵场海域中灰色绝对关联度大于0.90的海区SST建立资源丰度预测模型,并用2016年实际CPUE进行验证。灰色绝对关联分析表明,6-8月,30°~40°S,45°~60°W海域内存在若干海区的SST与次年对数CPUE时间序列呈现较强的关联度,可作为预报因子。GM(0,N)模型结果表明,以6-8月产卵场SST作为环境因子建立的模型4能较好地拟合出阿根廷滑柔鱼资源丰度变动趋势,与2016年真实值相比,相对误差为7%,该模型可较好地作为阿根廷滑柔鱼资源丰度的预测模型。相反,包含6月和7月SST的模型1效果优于不包含6月SST的模型2或不包含7月SST的模型3,拟合得到的2016年的数据与真实值相比,相对误差分别为128%和289%,这说明6月和7月是西南大西洋阿根廷滑柔鱼的主要产卵月份。展开更多
We developed an approach that integrates generalized additive model(GAM) and neural network model(NNM)for projecting the distribution of Argentine shortfin squid(Illex argentinus). The data for this paper was ba...We developed an approach that integrates generalized additive model(GAM) and neural network model(NNM)for projecting the distribution of Argentine shortfin squid(Illex argentinus). The data for this paper was based on commercial fishery data and relevant remote sensing environmental data including sea surface temperature(SST), sea surface height(SSH) and chlorophyll a(Chl a) from January to June during 2003 to 2011. The GAM was used to identify the significant oceanographic variables and establish their relationships with the fishery catch per unit effort(CPUE). The NNM with the GAM identified significant variables as input vectors was used for predicting spatial distribution of CPUE. The GAM was found to explain 53.8% variances for CPUE. The spatial variables(longitude and latitude) and environmental variables(SST, SSH and Chl a) were significant. The CPUE had nonlinear relationship with SST and SSH but a linear relationship with Chl a. The NNM was found to be effective and robust in the projection with low mean square errors(MSE) and average relative variances(ARV).The integrated approach can predict the spatial distribution and explain the migration pattern of Illex argentinus in the Southwest Atlantic Ocean.展开更多
文摘阿根廷滑柔鱼(Illex argentinus)是西南大西洋鱿钓渔业的主要作业鱼种,对资源丰度进行准确的预测可指导企业合理安排渔业生产。因此,本研究根据2000-2016年我国西南大西洋阿根廷滑柔鱼的生产数据,以单位捕捞努力量的渔获量(Catch per unit effort, CPUE)为阿根廷滑柔鱼资源丰度的指标,利用灰色绝对关联分析和灰色预测建模的方法(GM(0,N)),计算2001-2015年CPUE的时间序列值与产卵期(6-8月)产卵场海表面温度(Sea surface temperature, SST)时间序列值的灰色绝对关联度,选取产卵场海域中灰色绝对关联度大于0.90的海区SST建立资源丰度预测模型,并用2016年实际CPUE进行验证。灰色绝对关联分析表明,6-8月,30°~40°S,45°~60°W海域内存在若干海区的SST与次年对数CPUE时间序列呈现较强的关联度,可作为预报因子。GM(0,N)模型结果表明,以6-8月产卵场SST作为环境因子建立的模型4能较好地拟合出阿根廷滑柔鱼资源丰度变动趋势,与2016年真实值相比,相对误差为7%,该模型可较好地作为阿根廷滑柔鱼资源丰度的预测模型。相反,包含6月和7月SST的模型1效果优于不包含6月SST的模型2或不包含7月SST的模型3,拟合得到的2016年的数据与真实值相比,相对误差分别为128%和289%,这说明6月和7月是西南大西洋阿根廷滑柔鱼的主要产卵月份。
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.20155014the National Natural Science Fundation of China under contract No.NSFC31702343
文摘We developed an approach that integrates generalized additive model(GAM) and neural network model(NNM)for projecting the distribution of Argentine shortfin squid(Illex argentinus). The data for this paper was based on commercial fishery data and relevant remote sensing environmental data including sea surface temperature(SST), sea surface height(SSH) and chlorophyll a(Chl a) from January to June during 2003 to 2011. The GAM was used to identify the significant oceanographic variables and establish their relationships with the fishery catch per unit effort(CPUE). The NNM with the GAM identified significant variables as input vectors was used for predicting spatial distribution of CPUE. The GAM was found to explain 53.8% variances for CPUE. The spatial variables(longitude and latitude) and environmental variables(SST, SSH and Chl a) were significant. The CPUE had nonlinear relationship with SST and SSH but a linear relationship with Chl a. The NNM was found to be effective and robust in the projection with low mean square errors(MSE) and average relative variances(ARV).The integrated approach can predict the spatial distribution and explain the migration pattern of Illex argentinus in the Southwest Atlantic Ocean.