Nitrobenzene has been considered as a significant groundwater contaminant due to its wide usage in explosives, insecticides, herbicides, pharmaceuticals and dyes. Nitrobenzene is of environmental concern because of it...Nitrobenzene has been considered as a significant groundwater contaminant due to its wide usage in explosives, insecticides, herbicides, pharmaceuticals and dyes. Nitrobenzene is of environmental concern because of its toxicity. In the presence of zero-valent iron (ZVI), reduction of the nitro group is the dominant transformation process for nitrobenzene. A series of experiments were carried out to investigate the kinetics of nitrobenzene reduction by ZVI and the effects of pH and ZVI particle size on nitrobenzene removal in groundwater. The results indicated that nitrobenzene could be reduced to aniline by ZVI; the reduction of nitrobenzene by ZVI followed a pseudo first-order kinetics; the observed nitrobenzene reduction rate constant (k obs ) was 0.0006 min^-1 and the half-life of nitrobenzene (t 1/2 ) was 115.5 min; the mass balance achieved 87.5% for nitrobenzene reduction by the 1 mm ZVI particle and the final removal efficiency was 80.98%. In addition, the pH and ZVI particle size were found to exhibit significant influences on the nitrobenzene reduction. The observed nitrobenzene reduction rate constant linearly decreased with increase pH and the data fitted on polynomial regression equation for the observed nitrobenzene reduction rate constant and ZVI particle size. Therefore, use of ZVI based permeable reactive barrier technology to remedy nitrobenzene contaminated groundwater was feasible.展开更多
This study is based on both a generic and species level investigation of the individual size of the latest Permian conodont Neogondolella Pa elements collected from Meishan Section A, Changxing, Zhejiang Province. In ...This study is based on both a generic and species level investigation of the individual size of the latest Permian conodont Neogondolella Pa elements collected from Meishan Section A, Changxing, Zhejiang Province. In this study, an obvious size reduction of Neogondolella Pa elements within bed 24e of the upper Changxing Limestone is recognized. The size variation of the Neogon- dolella occurs simultaneously with some important events including the negative shift of δ 13C, change in the ratio of the abundance of cyanobacterial biomarkers versus that of other general bacterial biomarkers and the shallowing of the sea water. Through the investigation of the paleoenvironmental changes and the analysis of the paleoecology of the conodont genus Neogondolella, the authors propose that the major factors for the size reduction of species of the conodont genus Neogondolella are food shortages caused by the mass extinction, the shallowing of the sea water as well as the in- crease in opacity of the sea water during the end Permian. The same phenomenon of Neogondolella size reduction is also observed in preliminary research from the same horizon at Shangsi Section, Sichuan Province. All the evidence suggests that there was a mass extinction that occurred at the horizon of bed 24e, and the evidence supports the viewpoint of a multi-phase mass extinction during the Permian and Triassic transition in South China.展开更多
The microstructure behavior and deformation mechanism of semi-solid 60Si2Mn fabricated by electromagnetic stirring under different deformation conditions during thixoforming are studied by means of Gleeble-1500 therma...The microstructure behavior and deformation mechanism of semi-solid 60Si2Mn fabricated by electromagnetic stirring under different deformation conditions during thixoforming are studied by means of Gleeble-1500 thermal-strain-stress simulator. The micro- structure of deformed 60Si2Mn and that of the non-deformed are compared. The results show that the grain size within deformation zone decreases as the amount of deformation increases or deformation temperature decreases, but deformation fate has small effect on grain size when the rate is very low. Besides, there is a critical amount of deformation to reduce grain size. These results offer theoretical and experimental basis for further producing semi-solid material with high melting temperature and direct forming of semi-solid slurry.展开更多
The rational design of Fe–N–C catalysts that possess easily accessible active sites and favorable mass transfer,which are usually determined by the structure of catalyst supports,is crucial for the oxygen reduction ...The rational design of Fe–N–C catalysts that possess easily accessible active sites and favorable mass transfer,which are usually determined by the structure of catalyst supports,is crucial for the oxygen reduction reaction(ORR).In this study,an oleic acid-assisted soft-templating approach is developed to synthesize size-controlled nitrogen-doped carbon nanoparticles(ranging from 130 nm to 60 nm and 35 nm,respectively)that feature spiral mesopores on their surface(SMCs).Next,atomically dispersed Fe–Nx sites are fabricated on the size-tunable SMCs(Fe1/SMC-x,where x represents the SMC size)and the size-dependent activity toward ORR is investigated.It is found that the catalytic performance of Fe1/SMCs is significantly influenced by the size of SMCs,where the Fe1/SMC-60 catalyst shows the highest ORR activity with a half-wave potential of 0.90 V vs.RHE in KOH electrolyte,indicating that the gas-liquid-solid three-phase interface on the Fe1/SMC-60 enhances the accessibility of Fe–Nx sites.In addition,when using Fe1/SMC-60 as the cathode catalyst in aqueous zinc-air batteries(ZABs),it delivers a higher open-circuit voltage(1.514 V),a greater power density(223 mW cm^(−2)),and a larger specific capacity/energy than Pt/C-based counterparts.These results further highlight the potential of Fe1/SMC60 for practical energy devices associated with ORR and the importance of size-controlled synthesis of SMCs.展开更多
基金the 2008 Project of Scientific Research Foundation for the Returned Overseas Chinese Scholars(2008年教育部留学回国人员科研启动基金)the Science-Technology Project of Guangdong Province of China under Grant No.2007B030803006(广东省科技攻关项目)the Science-Technology Project of Hubei Province of China under Grant No.2005AA101C17(湖北省科技攻关项目)
基金supported by the National High Technology Research and Development Program(863) of China(No.2007AA06A410)the Water Pollution Control and Management Project(No.2008ZX07207-007-05)the National Natural Science Foundation of China(No.40802055)
文摘Nitrobenzene has been considered as a significant groundwater contaminant due to its wide usage in explosives, insecticides, herbicides, pharmaceuticals and dyes. Nitrobenzene is of environmental concern because of its toxicity. In the presence of zero-valent iron (ZVI), reduction of the nitro group is the dominant transformation process for nitrobenzene. A series of experiments were carried out to investigate the kinetics of nitrobenzene reduction by ZVI and the effects of pH and ZVI particle size on nitrobenzene removal in groundwater. The results indicated that nitrobenzene could be reduced to aniline by ZVI; the reduction of nitrobenzene by ZVI followed a pseudo first-order kinetics; the observed nitrobenzene reduction rate constant (k obs ) was 0.0006 min^-1 and the half-life of nitrobenzene (t 1/2 ) was 115.5 min; the mass balance achieved 87.5% for nitrobenzene reduction by the 1 mm ZVI particle and the final removal efficiency was 80.98%. In addition, the pH and ZVI particle size were found to exhibit significant influences on the nitrobenzene reduction. The observed nitrobenzene reduction rate constant linearly decreased with increase pH and the data fitted on polynomial regression equation for the observed nitrobenzene reduction rate constant and ZVI particle size. Therefore, use of ZVI based permeable reactive barrier technology to remedy nitrobenzene contaminated groundwater was feasible.
基金supported by the National Natural Science Foundation of China(Grant No.40232025)the GeoTurn Group of China University of Geosciences.
文摘This study is based on both a generic and species level investigation of the individual size of the latest Permian conodont Neogondolella Pa elements collected from Meishan Section A, Changxing, Zhejiang Province. In this study, an obvious size reduction of Neogondolella Pa elements within bed 24e of the upper Changxing Limestone is recognized. The size variation of the Neogon- dolella occurs simultaneously with some important events including the negative shift of δ 13C, change in the ratio of the abundance of cyanobacterial biomarkers versus that of other general bacterial biomarkers and the shallowing of the sea water. Through the investigation of the paleoenvironmental changes and the analysis of the paleoecology of the conodont genus Neogondolella, the authors propose that the major factors for the size reduction of species of the conodont genus Neogondolella are food shortages caused by the mass extinction, the shallowing of the sea water as well as the in- crease in opacity of the sea water during the end Permian. The same phenomenon of Neogondolella size reduction is also observed in preliminary research from the same horizon at Shangsi Section, Sichuan Province. All the evidence suggests that there was a mass extinction that occurred at the horizon of bed 24e, and the evidence supports the viewpoint of a multi-phase mass extinction during the Permian and Triassic transition in South China.
基金support from the National Natural Science Foundation of People's Republic of China(Grant No.59995440).
文摘The microstructure behavior and deformation mechanism of semi-solid 60Si2Mn fabricated by electromagnetic stirring under different deformation conditions during thixoforming are studied by means of Gleeble-1500 thermal-strain-stress simulator. The micro- structure of deformed 60Si2Mn and that of the non-deformed are compared. The results show that the grain size within deformation zone decreases as the amount of deformation increases or deformation temperature decreases, but deformation fate has small effect on grain size when the rate is very low. Besides, there is a critical amount of deformation to reduce grain size. These results offer theoretical and experimental basis for further producing semi-solid material with high melting temperature and direct forming of semi-solid slurry.
基金supported by Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant(ZR2022ZD30)Qingdao New Energy Shandong Laboratory Open Project(Grant:QNESL OP 202307)+2 种基金Natural Science Foundation of Shandong Province(ZR2023QB103)China Postdoctoral Science Foundation(2023M733609)Qingdao Postdoctoral Applied Research Project(QDBSH20230202075).
文摘The rational design of Fe–N–C catalysts that possess easily accessible active sites and favorable mass transfer,which are usually determined by the structure of catalyst supports,is crucial for the oxygen reduction reaction(ORR).In this study,an oleic acid-assisted soft-templating approach is developed to synthesize size-controlled nitrogen-doped carbon nanoparticles(ranging from 130 nm to 60 nm and 35 nm,respectively)that feature spiral mesopores on their surface(SMCs).Next,atomically dispersed Fe–Nx sites are fabricated on the size-tunable SMCs(Fe1/SMC-x,where x represents the SMC size)and the size-dependent activity toward ORR is investigated.It is found that the catalytic performance of Fe1/SMCs is significantly influenced by the size of SMCs,where the Fe1/SMC-60 catalyst shows the highest ORR activity with a half-wave potential of 0.90 V vs.RHE in KOH electrolyte,indicating that the gas-liquid-solid three-phase interface on the Fe1/SMC-60 enhances the accessibility of Fe–Nx sites.In addition,when using Fe1/SMC-60 as the cathode catalyst in aqueous zinc-air batteries(ZABs),it delivers a higher open-circuit voltage(1.514 V),a greater power density(223 mW cm^(−2)),and a larger specific capacity/energy than Pt/C-based counterparts.These results further highlight the potential of Fe1/SMC60 for practical energy devices associated with ORR and the importance of size-controlled synthesis of SMCs.