In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed...In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.展开更多
针对6轮足机器人动力电池的荷电状态(state of charge,SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive exte...针对6轮足机器人动力电池的荷电状态(state of charge,SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive extended Kalman filtering,AEKF)相结合的估计算法。首先通过FFRLS算法辨识建立动力电池等效模型参数;然后利用AEKF对SOC在线估计,并为参数辨识提供准确的开路电压;最后以机器人锂电池包为对象,在动态应力测试工况(dynamic stress test,DST)下实验验证了该算法可以准确地估算动力电池SOC,SOC估计相对误差在2.5%以内。展开更多
文摘In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable.
文摘针对6轮足机器人动力电池的荷电状态(state of charge,SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive extended Kalman filtering,AEKF)相结合的估计算法。首先通过FFRLS算法辨识建立动力电池等效模型参数;然后利用AEKF对SOC在线估计,并为参数辨识提供准确的开路电压;最后以机器人锂电池包为对象,在动态应力测试工况(dynamic stress test,DST)下实验验证了该算法可以准确地估算动力电池SOC,SOC估计相对误差在2.5%以内。