With the rapid development of smart products,fexible and stretchable smart wearable electronic devices gradually play an important role,and they are considered as the pioneers of the new generation of fexible electron...With the rapid development of smart products,fexible and stretchable smart wearable electronic devices gradually play an important role,and they are considered as the pioneers of the new generation of fexible electronic devices.Among these intelligent devices,fexible and stretchable strain sensors have been widely studied for their good fexibility,high sensitivity,high repeatability and huge potential for application in personal healthcare and motion detection.Moreover,unlike traditional rigid bulky sensors,the high-performance fexible strain sensors are lightweight portable devices with excellent mechanical and electrical performance,which can meet personalized needs and become more popular.Herein,the research progress of fexible strain sensors in recent years are reviewed,which mainly introducing the sensing principles and key parameters of strain sensors,commonly used conductive materials and fexible substrates and common preparation methods,and fnally proposes the future application and prospects of strain sensors.展开更多
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent pho...Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties,as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them.Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers,nitroaromatic explosives, pollutants, vitamins, and drugs.Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.展开更多
基金Financial support of this work was provided by Natural Science Foundation of Shandong Province of China(ZR2018QEM004,ZR2020QE081)Shandong Province Key Research and Development Plan(Major scientifc and technological innovation projects)(2019JZZY010340,2019JZZY010335,2019GGX102022)China Postdoctoral Science Foundation via grant No.2020M671994.
文摘With the rapid development of smart products,fexible and stretchable smart wearable electronic devices gradually play an important role,and they are considered as the pioneers of the new generation of fexible electronic devices.Among these intelligent devices,fexible and stretchable strain sensors have been widely studied for their good fexibility,high sensitivity,high repeatability and huge potential for application in personal healthcare and motion detection.Moreover,unlike traditional rigid bulky sensors,the high-performance fexible strain sensors are lightweight portable devices with excellent mechanical and electrical performance,which can meet personalized needs and become more popular.Herein,the research progress of fexible strain sensors in recent years are reviewed,which mainly introducing the sensing principles and key parameters of strain sensors,commonly used conductive materials and fexible substrates and common preparation methods,and fnally proposes the future application and prospects of strain sensors.
基金supported by NTUA*STAR Silicon Technologies Centre of Excellence under the program Grant (No.11235100003)Grants Tier 2 MOE2017-T2-2-002 (No.M402110000) from Ministry of Educationthe NRF-ANR Joint Call 2017 Research Grant (No. M419640000) from the National Research Foundation,Singapore
文摘Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties,as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them.Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers,nitroaromatic explosives, pollutants, vitamins, and drugs.Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing.